Равнобедренный прямоугольный треугольник с гипотенузой 142–√ см вращается вокруг катета. Определи радиус, высоту и объём конуса, который образовался (π≈3).
Центры вписанных в углы данной равнобокой трапеции равноудалены от сторон данной трапеции на 1 (радиус). соединив центры, мы имеем меньшую трапецию, стороны которой параллельны сторонам данной нам трапеции, то есть имеем подобные трапеции. Найдем высоту данной нам трапеции. Половина азности оснований (24-12):2 =6 - это катет бокового треугольника в трапеции, гипотенуза равна 10. Значит высота равна √(100-36)=8.
Тогда высота новой подобной трапеции равна 6 (8-1-1). Коэффициент подобия, следовательно, равен 8/6 = 4/3.
Площадь данной нам трапеции равна полусумме оснований, умноженную на высоту, то есть (12+24):2*8=144. Тогда площадь новой трапеции равна (144*3):4 = 108.
Один.
2. Из каких точек состоит отрезок AB?
Из всех точек прямой, расположенных между точками А и В, и самих точек А и В.
3. Какие два отрезка называют равными?
Которые можно совместить наложением.
4. Какие длины имеют равные отрезки?
Равные отрезки имеют равные длины.
5. Что можно сказать об отрезках, имеющих равные длины?
Что они равны.
6. Сформулируйте основное свойство длины отрезка.
Длина отрезка равна сумме длин его частей.
7. Можно ли любой отрезок выбрать в качестве единичного?
Да, можно.
8. Что называют расстоянием между двумя точками?
Длину отрезка, с концами в этих точках.
9. Чему равно расстояние между двумя совпадающими точками?
Нулю.
10. Какую точку называют серединой отрезка AB?
Точку, которая делит его на два равных отрезка.
Центры вписанных в углы данной равнобокой трапеции равноудалены от сторон данной трапеции на 1 (радиус). соединив центры, мы имеем меньшую трапецию, стороны которой параллельны сторонам данной нам трапеции, то есть имеем подобные трапеции. Найдем высоту данной нам трапеции. Половина азности оснований (24-12):2 =6 - это катет бокового треугольника в трапеции, гипотенуза равна 10. Значит высота равна √(100-36)=8.
Тогда высота новой подобной трапеции равна 6 (8-1-1). Коэффициент подобия, следовательно, равен 8/6 = 4/3.
Площадь данной нам трапеции равна полусумме оснований, умноженную на высоту, то есть (12+24):2*8=144. Тогда площадь новой трапеции равна (144*3):4 = 108.