Равнобедренный треугольник ABE находится в плоскости α. Боковые стороны треугольника ABE равны по 5 см, а сторона основания AE= 8 см. К этой плоскости проведены перпендикуляр CB, который равен 4 см, и наклонные CA и CE. Вычисли расстояние от точки C до стороны треугольника AE.
360:10=36 градусов каждый.
Объяснение:
здесь все углы равны, тк в любом сочетании получаем вертикальные
например, верхний красный (назовем угол 1 и далее, соответственно, по порядку) уг1=уг6 тк вертикальны. угол , содержащий у2+у3+у4 = углу, содержащему у7+у8+у9 и тд
значит , здесь все углы равны, тк в любом сочетании получаем вертикальные . А вертикальные равны. Т.о. мы можем доказать равенство всех углов. Всего их 10, значит делим на 10
Если что-то непонятно , пишите в комментах.
Успехов в учёбе! justDavid
3 см
Чертеж в приложении.
Объяснение:
1. Опустим перпендикуляр СЕ в трапеции от меньшего основания к большему. Эта высота разделит большее основание на два отрезка. По свойству равнобедренной трапеции (ЕD - меньший равен половине разности оснований, AE - больший равен полусумме оснований) больший отрезок = средней линии, тк средняя линия тоже = полусумме оснований ;
2. рассм треуг АСЕ- прямоуг (тк СЕ перпенд АD):
тк сумма углов треуг =180, то уг АСЕ= 180-уг САЕ-уг АЕС=180-60-90=30 градусов;
тк АЕ- катет против 30 гр, то АЕ=1/2гипотенузы=1/2 *АС=1/2 * 6=3см
значит, средняя линия MN =3 см
Если что-то непонятно , пишите в комментах.