Равнобедренный треугольник АВС (АC = CВ) вписан в окружность с центром в точке О. Найдите величины дуг АС, АВ и ВС, если ∠АОВ = 100°. ПОМАГИТЕ УМОЛЯЮЮ!
Центр окружности, описанной вокруг прямоугольного треугольника, находится на середине его гипотенузы (свойство). Поэтому надо при циркуля и линейки разделить гипотенузу данного нам треугольника пополам и радиусом, равным половине гипотенузы, провести окружность. Итак, Радиусом, большим половины гипотенузы, проводим окружности (дуги окружностей) с центрами в вершинах В и С. Соединяем точки их пересечения M и N. На пересечении гипотенузы ВС и прямой MN получаем центр О искомой окружности. Радиусом, равным ОВ (ОС), проводим искомую окружность.
Запишем уравнение окружности в виде (x-a)²+(y-b)²=R², где a и b - координаты центра окружности, R - её радиус. Так как по условию центр окружности находится на оси ОХ, то b=0. Тогда уравнение окружности принимает вид: (x-a)²+y²=R². Подставляя в это уравнение координаты данных точек, получаем систему уравнений:
(7-a)²+0²=R²
(0-a)²+10²=R²,
или:
(7-a)²=R²
a²+100=R²
Решая её, находим a=-51/14 и R²=(149/14)². Поэтому искомое уравнение окружности таково: (x+51/14)²+y²=(149/14)²
Поэтому надо при циркуля и линейки разделить гипотенузу данного нам треугольника пополам и радиусом, равным половине гипотенузы, провести окружность.
Итак, Радиусом, большим половины гипотенузы, проводим окружности (дуги окружностей) с центрами в вершинах В и С. Соединяем точки их пересечения M и N.
На пересечении гипотенузы ВС и прямой MN получаем центр О искомой окружности.
Радиусом, равным ОВ (ОС), проводим искомую окружность.
ответ: (x+51/14)²+y²=(149/14)²
Объяснение:
Запишем уравнение окружности в виде (x-a)²+(y-b)²=R², где a и b - координаты центра окружности, R - её радиус. Так как по условию центр окружности находится на оси ОХ, то b=0. Тогда уравнение окружности принимает вид: (x-a)²+y²=R². Подставляя в это уравнение координаты данных точек, получаем систему уравнений:
(7-a)²+0²=R²
(0-a)²+10²=R²,
или:
(7-a)²=R²
a²+100=R²
Решая её, находим a=-51/14 и R²=(149/14)². Поэтому искомое уравнение окружности таково: (x+51/14)²+y²=(149/14)²