В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Равнобедренный треугольник АВС (АC=CВ) вписан в окружность с центром в точке О. Найдите величины дуг АС, АВ и ВС, если ∠АОВ=140°.​

Показать ответ
Ответ:
vlad1435
vlad1435
01.05.2022 22:08

Условие задачи неполное. Должно быть так:

Основанием тетраэдра МАBC служит треугольник АBC в котором AB = BC и АС = 2а√3. Точка О принадлежит АС отрезок МО перпендикулярен АС и ОА = ОС. Расстояние от точки О до прямой МB равно а. Найти угол между плоскостями (AMB) и (CMB).

Проведем ОК⊥МВ. Тогда ОК - расстояние от точки О до прямой МК и ОК = а.

ΔАВС равнобедренный, значит медиана ВО (ОА = ОС по условию) является и высотой,

ВО⊥АС,

МО⊥АС по условию, значит

АС⊥(МОВ).

МВ лежит в плоскости (МОВ), значит МВ⊥АС и ОК⊥МВ по построению, тогда МВ⊥(АКС) и значит ∠АКС - линейный угол двугранного угла между плоскостями (АМВ) и (СМВ).

АО = ОС = АС/2 = а√3, МО - медиана и высота в треугольнике МАС, значит он равнобедренный,

МА = МС.

ΔМАК = ΔМСК по гипотенузе и катету (∠АКМ = ∠СКМ = 90°, МА = МС и МК - общий катет), тогда

АК = КС, значит медиана ОК в равнобедренном треугольнике АКС является и высотой и биссектрисой, т.е. ОК⊥АС и ∠АКС = 2∠ОКС.

ΔОКС: ∠КОС = 90°,

           tg∠OKC = OC / OK = a√3 / a = √3

Тогда ∠ОКС = 60°.

∠АКС = 2∠ОКС = 120°

0,0(0 оценок)
Ответ:
oleg34643
oleg34643
27.07.2020 14:42
Дано: 
ABCD - ромб ;
∠A =60° ;
MA ⊥ ( ABCD ) ;
MA  =AB .

α = ∠ ( (MCD) , (MCB) )   -?  (угол  между плоскостями )

Длину  стороны ромба обозначаем через  a : AB =AD =BC =CD =a; 
точка пересечения диагоналей   BD и  AC → O.
ΔBAD - равносторонний (AB =AD и ∠A =60° ) ⇒ BD = a  ;
AC =2AO =a√3 .   
---
MA ⊥ ( ABCD ) ⇒ MA ⊥ AB  и  MA ⊥ AD .
ΔMAB = ΔMAD  и т.к. MA  =AB =a  ⇒  MB =MD =√(a² +a²) =a√2 ,  
Следовательно 
 ΔMCD  = ΔMCB ( по трем сторонам _  MC -общее)  и  из  ΔMAC :  
MC =√(MA²+ AC²) = √(a²+ 3a²)  =2a .
---
MC линия пересечения  плоскостей  MCD и  MCB .
Проведем  в треугольнике ΔMCD   высоту DK:   DK ⊥ MC  (K- основание высоты ,  K ∈  [ MC]   ;  MC² > MB² +DC² ⇒ ∠ MDC _тупой ) ,  точка  K  соединяем  с  вершиной  B ,  очевидно  BK ⊥ MC  из ΔMCD  = ΔMCB .    
Таким образом ∠DKB =  α  искомый угол .
По теореме косинусов из  ΔMCD :
MD²  = MC² +CD² - 2MC*CD*cos∠MCD ⇔
2a² =4a² +a² -2*2a*acos∠MCD⇒ cos∠MCD =3/4 ⇒  
sin∠MCD = √(1 -cos²∠MCD) =√(1 -(3/4)² ) =(√7) / 4
KD =CD*sin∠MCD  = (a√7) / 4    (из ΔKCD ).
---
из ΔDKO :   sin (α/2 ) = DO / DK =(a/2) / (a√7) / 4 =2 /√7.
α/2 = arcsin (2 /√7) ⇒ α =2arcsin (2 /√7).

ответ :  2arcsin (2 /√7) .                       * * * 2arcsin (2√7 / 7 ) * * * .     
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота