Пусть АВ ∩ СD = О При пересечении двух прямых получаем пары равных углов : ∠AOD = ∠COB = x и ∠AOC = ∠DOB = y По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему : x + y + x = 278° 2 x + y = 278° 2 x + y = 278° ⇒ ⇒ x + y + x + y =360° 2 x + 2 y = 360° x + y = 180° Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒ х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98° Тогда у = 180° - х = 180° - 98° = 82° ответ : 98 ° ; 82° ; 98° ; 82°
По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему :
x + y + x = 278° 2 x + y = 278° 2 x + y = 278°
⇒ ⇒
x + y + x + y =360° 2 x + 2 y = 360° x + y = 180°
Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒
х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98°
Тогда у = 180° - х = 180° - 98° = 82°
ответ : 98 ° ; 82° ; 98° ; 82°
По условию отрезки КМ║АС, и МР║АВ.
Четырёхугольник, у которого противоположные стороны попарно параллельны, является параллелограммом
В параллелограмме КМРА диагональ АМ - секущая при КМ║|АР, поэтому накрестлежащие ∠КМА=∠МАР.
Так как АМ биссектриса, то ∠КМА=∠КАМ, и ∆ АКМ - равнобедренный.
Аналогично доказывается, что ∆ АРМ равнобедренный.
Если стороны параллелограмма равны, этот параллелограмм - ромб.
Диагонали ромба – - биссектрисы, медианы и высоты равнобедренных треугольников, образуемых ими с соседними сторонами ромба. ⇒
Диагонали ромба взаимно перпендикулярны.