Сосны, земля и расстряние между верхушками составляют прямоугольную трапецию. где сосны – основания, а земля и расстояние между верхушками – боковые стороны.проведем высоту из вершины тупого угла(верхушка короткой сосны), она разделит прямоугольную трапецию на прямоугольник и прямоугольный треугольник. где высота равна 16метров (расстояние между соснами).если основания трапеции равны 27метров и 15метров, тогда катет прямоугольного треугольника равен высоте трапеции, а второй катет 27 - 15 = 12метроврасстояние между верхушками – боковая сторона трапеции и гипотенуза одновременно.сумма квадратов катетов равно квадрату гипотенузы12² + 16² = 144+256=400√400 = 20метров.
Обозначим точку пересечения плоскости β отрезком CD буквой О.
DD1║CC1, CD- секущая, ⇒ накрестлежащие ∠D=∠C, вертикальные углы при О равны, ⇒ ∆ DOD1 подобен ∆ COC1 по первому признаку.
k=CC1:DD1=6/√3:√3=2
Тогда СО=2DO=²/₃ СD
ЕО=СО-СЕ
EO= \frac{2}{3} CD- \frac{1}{2} CD= \frac{1}{6} CDEO=
3
2
CD−
2
1
CD=
6
1
CD
∆ COC1 подобен ∆ EOE1 по первому признаку подобия ( ∠С=∠Е - соответственные при пересечении параллельных прямых ЕЕ1 и СС1 секущей CD, угол О - общий).
k= \frac{CO}{EO} = \frac{ \frac{2}{3} CD}{ \frac{1}{6} CD}= \frac{2*6}{3}= 4k=
EO
CO
=
6
1
CD
3
2
CD
=
3
2∗6
=4 ⇒
E E_{1}= \frac{6}{ \sqrt{3}}:4= \frac{6* \sqrt{3} }{ \sqrt{3}* \sqrt{3} *4}= \frac{ \sqrt{3}}{2} smEE
1
=
3
6
:4=
3
∗
3
∗4
6∗
3
=
2
3
sm