-b - это вектор, противоположный вектору b, поэтому его координаты противоположны координатам вектора b, это будет (-3;2) 1/2с = 1/2(-6; 2) = (-3;1). Использовали правило умножения вектора на число: чтобы умножить вектор на число, надо каждую координату вектора умножить на это число. Теперь выполняем сложение и получаем а = (-3; 2) + (-3; 1) = ( -6; 3)
Если всё это записать кратко, то будет так: а = -(3; -2) + 1/2(-6; 2) = (-3; 2) + (-3; 1) = ( -6; 3)
Длина вектора равна: корень квадратный из суммы квадратов его координат. (-6)^2 + 3^2 = 36 + 9 = 45 IaI (это длина вектора а)= корень из 45 = 3 на корень из 5
Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
1/2с = 1/2(-6; 2) = (-3;1). Использовали правило умножения вектора на число: чтобы умножить вектор на число, надо каждую координату вектора умножить на это число.
Теперь выполняем сложение и получаем
а = (-3; 2) + (-3; 1) = ( -6; 3)
Если всё это записать кратко, то будет так:
а = -(3; -2) + 1/2(-6; 2) = (-3; 2) + (-3; 1) = ( -6; 3)
Длина вектора равна: корень квадратный из суммы квадратов его координат.
(-6)^2 + 3^2 = 36 + 9 = 45
IaI (это длина вектора а)= корень из 45 = 3 на корень из 5