Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм. Продлим медиану за точку пересечения с гипотенузой и отложим отрезок, равный медиане. Тогда получившийся четырехугольник - параллелограмм (смотри определение). А параллелограмм, у которого углы прямые - прямоугольник. В прямоугольном треугольнике против угла 30° лежит катет, равный половине гипотенузы. Значит один из катетов равен 7. А второй по Пифагору равен √(196-49) = √147см
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Продлим медиану за точку пересечения с гипотенузой и отложим отрезок, равный медиане. Тогда получившийся четырехугольник - параллелограмм (смотри определение). А параллелограмм, у которого углы прямые - прямоугольник. В прямоугольном треугольнике против угла 30° лежит катет, равный половине гипотенузы. Значит один из катетов равен 7. А второй по Пифагору равен √(196-49) = √147см
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см