Примем длину ребра куба равной 70 (для кратности между 14 и 5).
Так как точки М и N, принадлежат плоскости АВС, которая параллельна заданной плоскости А1В1С1, то угол между плоскостями MNK и A1B1C1 равен углу между плоскостями MNK и ABC.
Помести куб в систему координат точкой А в начало,ребром АД по оси Ох, ребром АВ по оси Оу.
В соответствии с заданием определим координаты точек.
Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. Уравнение плоскости определяется из выражения: (x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0.
Подставив координаты точек в данное выражение и сократив на 35, получаем уравнение плоскости MNК: 2x + 14y + 5z - 70 = 0.
Угол между плоскостями определяем через его косинус:
cos α = |A₁·A₂ + B₁·B₂ + C₁·C₂|
√(A₁² + B₁² + C₁²)*√(A₂² + B₂² + C₂²) = 1/3.
α = arc cos(1/3) = 1,23096 радиан или 70,529 градуса.
Боковая грань усечённой пирамиды - равнобокая трапеция с основаниями 2 и 4 см и острым углом при большем основании, равным 60 градусов.
Боковое ребро L пирамиды равно: L = ((4 - 2)/2)/cos 60° = 1/(1/2) = 2 см.
Наклонная высота h боковой грани равна:
h = √(L² -((4-2)/2)²) = √(4 - 1) = √3 см.
Теперь проведём вертикальное сечение пирамиды через наклонные высоты противоположных боковых граней.
В сечении получим равнобокую трапецию с основаниями 2 и 4 см, боковые стороны которой равны √3 см.
Высота Н такой трапеции равна высоте пирамиды
Н = √((√3)² - ((4-2)/2)²) = √(3 - 1) = √2 см.
ответ: высота пирамиды равна √2 см.
Примем длину ребра куба равной 70 (для кратности между 14 и 5).
Так как точки М и N, принадлежат плоскости АВС, которая параллельна заданной плоскости А1В1С1, то угол между плоскостями MNK и A1B1C1 равен углу между плоскостями MNK и ABC.
Помести куб в систему координат точкой А в начало,ребром АД по оси Ох, ребром АВ по оси Оу.
В соответствии с заданием определим координаты точек.
А(0; 0; 0), В(0; 70; 0), С(70; 70; 0). Уравнение АВС: z = 0.
M(35; 0; 0), N(0; 5; 0), K(0; 0; 14).
Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. Уравнение плоскости определяется из выражения: (x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0.
Подставив координаты точек в данное выражение и сократив на 35, получаем уравнение плоскости MNК: 2x + 14y + 5z - 70 = 0.
Угол между плоскостями определяем через его косинус:
cos α = |A₁·A₂ + B₁·B₂ + C₁·C₂|
√(A₁² + B₁² + C₁²)*√(A₂² + B₂² + C₂²) = 1/3.
α = arc cos(1/3) = 1,23096 радиан или 70,529 градуса.