Хорда параллельна одному их диаметров. Второй диаметр проходит через середину хорды и центр окружности, являющийся серединой диаметра.
Это означает, что у двух диаметров есть одна общая точка-центр окружности. Аксиома гласит, что через данную точку плоскости (центр окружности в нашем случае) можно провести перпендикуляр к данной прямой только один. Вывод: Существует только ещё 1 диаметр перпендикулярный первому диаметру.
Другая аксиома гласит: "Два перпендикуляра к одной и той же прямой параллельны между собой. "У нас параллельны хорда и один из диаметров, то они и является теми двумя перпендикулярами к одной и той же прямой (проходящей через второй диаметр). И хорда, и первый диаметр являются перпендикулярами ко второму диаметру. Что и следовало доказать.
Хорда параллельна одному их диаметров. Второй диаметр проходит через середину хорды и центр окружности, являющийся серединой диаметра.
Это означает, что у двух диаметров есть одна общая точка-центр окружности. Аксиома гласит, что через данную точку плоскости (центр окружности в нашем случае) можно провести перпендикуляр к данной прямой только один. Вывод: Существует только ещё 1 диаметр перпендикулярный первому диаметру.
Другая аксиома гласит: "Два перпендикуляра к одной и той же прямой параллельны между собой. "У нас параллельны хорда и один из диаметров, то они и является теми двумя перпендикулярами к одной и той же прямой (проходящей через второй диаметр). И хорда, и первый диаметр являются перпендикулярами ко второму диаметру. Что и следовало доказать.
Все грани куба - квадраты. Диагональ квадрата равна а√2.
Диагональ куба - а√3.
а) расстояние от вершины В₁:
до ребер, лежащих с вершиной В₁ в одной грани (ребра А₁D₁, C₁D₁, AB, BC, AA₁, CC₁) равно длине ребра - а (синие отрезки);
до ребер AD, DD₁ и DC равно диагонали квадрата - а√2 (зеленые отрезки);
до трех остальных ребер - В₁А, В₁В и В₁С - равно нулю.
б) до вершин, лежащих с вершиной В₁ на одном ребре (вершины А₁, В₁, С₁) равно длине ребра - а (синие отрезки);
до вершин А, С, D₁ равно диагонали квадрата а√2 (зеленые отрезки);
до вершины D равно длине диагонали куба - а√3.