Полная поверхность s=2*pi*R^2+2piRh h=(S/2 -pi*R^2)/pi*R V=pi*R^2*h=pi*R^2(s/2-pi*R^2)/(pi*R)=R *s/2-pi*R^3 Для нахождения максимума функции обьема найдем нули производную V '=S/2-2*pi*R^2=0 s/2=2*pi*R^2 откуда R=+-sqrt(s/4pi) расставив корни производной на числовой оси можно убедится что в точке sqrt(s/4*pi) она меняет знак с + на - ,тогда в этом случае обьем будет наибольший то есть R=sqrt(s/4*pi)=sqrt(25/pi)=5/sqrt(pi) h=(100/2-pi*25/pi)/pi*5/sqrt(pi)=25/(5*sqrt(pi))=5/sqrt(pi) ответ:R=h=5/sqrt(pi)
А) Если вершины квадрата MNKP делят каждую сторону квадрата ABCD в отношении 3:4, то каждая из его сторон разделена на 2 части, равные: (28/ (3+4))*3 = 12 см и (28/ (3+4))*4 = 16 см . Между сторонами треугольников АВСД и MNKP образуются треугольники. где гипотенузой являются стороны квадрата MNKP, а катетами - отрезки сторон квадрата АВСД по 12 и 16 см. Отсюда сторона квадрата MNKP равна √(12²+16²) = √(144+256) = √400 = 20 см. б) Чтобы найти сторону квадрата ABCD, если MN=10 см, примем её за х. Тогда катеты в рассмотренных ранее треугольниках будут равны (3/7)х и (4/7х. По Пифагору ((3/7)х)² + ((4/7х)² = 10² (9/49)х²+(16/49)х² = 100 25х² = 100*49 х² = 4*49 х = 2*7 = 14 см.
Между сторонами треугольников АВСД и MNKP образуются треугольники. где гипотенузой являются стороны квадрата MNKP, а катетами - отрезки сторон квадрата АВСД по 12 и 16 см.
Отсюда сторона квадрата MNKP равна √(12²+16²) = √(144+256) = √400 = 20 см.
б) Чтобы найти сторону квадрата ABCD, если MN=10 см, примем её за х. Тогда катеты в рассмотренных ранее треугольниках будут равны (3/7)х и (4/7х.
По Пифагору ((3/7)х)² + ((4/7х)² = 10²
(9/49)х²+(16/49)х² = 100
25х² = 100*49
х² = 4*49
х = 2*7 = 14 см.