Обозначим вершины параллелепипеда АВСDD1FА1В1С1. Формула объема параллелепипеда V=S•H, где Ѕ - площадь грани, лежащей в основании, Н - высота, т.е. расстояние между параллельными (горизонтальными) гранями.
Ѕ(ромба)=d•d1/2=BD•AC/2=6•8/2=24 см² Диагонали ромба взаимно перпендикулярны и делят его на 4 равных прямоугольных треугольника, катеты которых равны половинам диагоналей. Из соотношения катетов 3:4, эти треугольники – так называемые египетские, ⇒ гипотенузы этих треугольников -стороны ромба– равны 5 см.
По условию все грани параллелепипеда - равные ромбы, ⇒ боковое ребро составляет с соседними сторонами основания равные углы. ∠А1АК=∠А1АМ. Площади равных граней равны, а их высоты – равные перпендикуляры.⇒ А1К=А1М. Из формулы площади параллелограмма h=S:a=24/5 см. По т.Пифагора АК=√(AA1²-A1К²)=√(5²-(24/5)²)=7/5 см.
Треугольники АКА1 и АМА1 равны по катетам и общей гипотенузе АА1 Проекции равных наклонных А1К и А1М равны. ⇒ НК=НМ. Отсюда прямоугольные ∆ АКН=∆ АМН, их острые углы равны. Поэтому основание высоты А1Н параллелепипеда лежит на биссектрисе угла ВАD, т.е. на диагонали ромба. Прямоугольные ∆ АКН ~∆ АВО по общему острому углу при А. Из подобия следует отношение АН:АВ=АК:АО ⇒АН:5=(7/5):4 ⇒ АН=7/4. т.Пифагора А1Н=(√(AA1²-АН*)=√((400-49):4))=√(9•39/16). АН=0,75√39. V(параллелеп)=24• 0,75√39=18√39 или ≈ 112,41 см³
1 РЕШЕНИЕ рисунок прилагается В четырехугольной пирамиде SABCD все ребра равны,значит все боковые грани равносторонние треугольники Так как точка M -- середина ребра SC, то ВМ - медиана, биссектриса, высота в треугольнике BSC и ВМ -перпендикуляр к SC DМ - медиана, биссектриса, высота в треугольнике DSC и DМ -перпендикуляр к SC ТРИ точки B,D,M образуют плоскость BMD, в которой лежат пересекающиеся прямые (BM) и (DM). Так как (SC) перпендикулярна к каждой из прямых (BM) и (DM), следовательно плоскость BMD перпендикулярна прямой SC. ДОКАЗАНО. 2 РЕШЕНИЕ рисунок прилагается Так как АВ ⊥ ВС , то основание пирамиды - прямоугольный треугольник ABC площадь прямоугольного треугольника S(∆ABC)=1/2 АВ*ВС = 1/2 *10*15=75 Так как через точку М ребра SB проведено сечение плоскостью, параллельной плоскости АВС, то по теореме Фалеса эта плоскость делит боковые ребра пирамиды на пропорциональные отрезки таким образом, что: ∆ASB ~ ∆KSM ∆ASC ~ ∆KSN ∆BSC ~ ∆MSN подобные треугольники. Искомое сечение ∆KMN Причем если SM:MB=2:3 , то коэффициент подобия k = SM/SB = 3/5 В подобных треугольниках соответствующие стороны пропорциональны KM ~ AB KN ~ AC MN ~ BC тогда ∆KMN ~ ∆ABC с коэффициентом подобия k = 3/5 . Известно, что площади подобных треугольников относятся, как k^2 тогда S(∆KMN) = k^2 * S(∆ABC) = (3/5)^2 * 75 = 27 ответ S = 27
Обозначим вершины параллелепипеда АВСDD1FА1В1С1. Формула объема параллелепипеда V=S•H, где Ѕ - площадь грани, лежащей в основании, Н - высота, т.е. расстояние между параллельными (горизонтальными) гранями.
Ѕ(ромба)=d•d1/2=BD•AC/2=6•8/2=24 см² Диагонали ромба взаимно перпендикулярны и делят его на 4 равных прямоугольных треугольника, катеты которых равны половинам диагоналей. Из соотношения катетов 3:4, эти треугольники – так называемые египетские, ⇒ гипотенузы этих треугольников -стороны ромба– равны 5 см.
По условию все грани параллелепипеда - равные ромбы, ⇒ боковое ребро составляет с соседними сторонами основания равные углы. ∠А1АК=∠А1АМ. Площади равных граней равны, а их высоты – равные перпендикуляры.⇒ А1К=А1М. Из формулы площади параллелограмма h=S:a=24/5 см. По т.Пифагора АК=√(AA1²-A1К²)=√(5²-(24/5)²)=7/5 см.
Треугольники АКА1 и АМА1 равны по катетам и общей гипотенузе АА1 Проекции равных наклонных А1К и А1М равны. ⇒ НК=НМ. Отсюда прямоугольные ∆ АКН=∆ АМН, их острые углы равны. Поэтому основание высоты А1Н параллелепипеда лежит на биссектрисе угла ВАD, т.е. на диагонали ромба. Прямоугольные ∆ АКН ~∆ АВО по общему острому углу при А. Из подобия следует отношение АН:АВ=АК:АО ⇒АН:5=(7/5):4 ⇒ АН=7/4. т.Пифагора А1Н=(√(AA1²-АН*)=√((400-49):4))=√(9•39/16). АН=0,75√39. V(параллелеп)=24• 0,75√39=18√39 или ≈ 112,41 см³
РЕШЕНИЕ
рисунок прилагается
В четырехугольной пирамиде SABCD все ребра равны,значит все боковые грани равносторонние треугольники
Так как точка M -- середина ребра SC, то
ВМ - медиана, биссектриса, высота в треугольнике BSC и
ВМ -перпендикуляр к SC
DМ - медиана, биссектриса, высота в треугольнике DSC и
DМ -перпендикуляр к SC
ТРИ точки B,D,M образуют плоскость BMD, в которой лежат пересекающиеся прямые (BM) и (DM).
Так как (SC) перпендикулярна к каждой из прямых (BM) и (DM),
следовательно плоскость BMD перпендикулярна прямой SC.
ДОКАЗАНО.
2
РЕШЕНИЕ
рисунок прилагается
Так как АВ ⊥ ВС , то основание пирамиды - прямоугольный треугольник ABC
площадь прямоугольного треугольника S(∆ABC)=1/2 АВ*ВС = 1/2 *10*15=75
Так как через точку М ребра SB проведено сечение плоскостью, параллельной плоскости АВС, то по теореме Фалеса эта плоскость делит боковые ребра пирамиды на пропорциональные отрезки таким образом, что:
∆ASB ~ ∆KSM
∆ASC ~ ∆KSN
∆BSC ~ ∆MSN
подобные треугольники.
Искомое сечение ∆KMN
Причем если SM:MB=2:3 , то коэффициент подобия k = SM/SB = 3/5
В подобных треугольниках соответствующие стороны пропорциональны
KM ~ AB
KN ~ AC
MN ~ BC
тогда ∆KMN ~ ∆ABC с коэффициентом подобия k = 3/5 .
Известно, что площади подобных треугольников относятся, как k^2 тогда
S(∆KMN) = k^2 * S(∆ABC) = (3/5)^2 * 75 = 27
ответ S = 27