2числа нашла 1)628750=шепнул 2)682750= шепнул ответ: 1) 3143750=крикнул 2)3413750=крикнул решение можно так попробовать: 1. л=0 или 5 т.к. сумма других пяти одинаковых слагаемых (цифр) не будет оканчиваться на ту же цифру 2. а) если л=0 , то у=5 (так же как 1 пункт) б) если л=5, то у*5=у+1 такого быть не может итак, в конце 50 (если при умножениипоследних двух букв получаются те же буквы,то это по любому 50) 3. н не может равняться 1 , т.к. 5 занята буква у, значит н=7 (7*5 +2 = последняя цифра 7) далее к не может быть меньше 3 ( это расскажешь) , а т.к. тройка была в уме , то к ровно 3 4. дальше понятно ш=6 ( иначе ответ не с 3 будет начинаться) 5 к=3 ,то п*5 должно оканчиваться на 0 => р=8 или 2
Параллелограмм ABCD не пересекает плоскость α. Через вершины A, B, C и D паралелограма проведены параллельные прямые, которые пересекают плоскость α в точках A1, B1, C1 и D1 соответственно. Найдите длину отрезка CC1, если AA1 = 12 см, BB1 = 8 см, DD1 = 32 см
ответ: 28 см
Объяснение: Параллельные прямые, соединяющие противолежащие вершины параллелограмма с плоскостью α, диагонали и их проекции образуют в пространстве между параллелограммом и плоскостью α две трапеции: АСС1А1 и ВDD1В1 с общей средней линией ОО1, которая соединяет точку пересечения О диагоналей АВСD с ее проекцией О1 на плоскости α
Длина средней линии трапеции равна полусумме оснований.
Параллелограмм ABCD не пересекает плоскость α. Через вершины A, B, C и D паралелограма проведены параллельные прямые, которые пересекают плоскость α в точках A1, B1, C1 и D1 соответственно. Найдите длину отрезка CC1, если AA1 = 12 см, BB1 = 8 см, DD1 = 32 см
ответ: 28 см
Объяснение: Параллельные прямые, соединяющие противолежащие вершины параллелограмма с плоскостью α, диагонали и их проекции образуют в пространстве между параллелограммом и плоскостью α две трапеции: АСС1А1 и ВDD1В1 с общей средней линией ОО1, которая соединяет точку пересечения О диагоналей АВСD с ее проекцией О1 на плоскости α
Длина средней линии трапеции равна полусумме оснований.
ОО1=(ВВ1+DD1):2=(8+32):2=20 см =>
СС1+АА1=ОО1•2=40
СС1=40-АА1=40-12=28 см