Read the text again. Match questions 1-4 with paragraphs A-E. What do we want from life? ___A___ 1 How does he travel? 2 What about food? 3 How does he do it? 4 What does he do all day?
Если провести сечение пирамиды через ее высоту перпендикулярно боковой грани, то получится прямоугольный треугольник CNK, где CN - высота пирамиды - один из катетов треугольника, NK - второй катет (след сечения основания пирамиды, N - прямой угол, K - угол равный 60 градусам (из условия), CK - гипотенуза (высота боковой грани пирамиды).
Центр O вписанного в пирамиду шара лежит на CN так, что ON равно его радиусу. Из точки O проведем перпендикуляр на гипотенузу до точки M. OM также должен быть равен радиусу шара. Рассматривая это построение, нетрудно показать, что точка O делит высоту CN в отношении 1:2. Таким образом радиус вписанного шара равен 3 (9/3).
Объем шара (4/3)*π*3*3*3 = π*36 или примерно 3.14*36 = 113
Допускаю, что решение не относится к конструктивной геометрии. К простой - относится. Возможно, оно Вам Понадобятся : циркуль, линейка, угольник с прямым углом для построения параллельных прямых, транспортир, карандаш. 1). Чертим окружность данного радиуса. 2).Под ней чертим произвольную прямую с точкой касания с окружностью в точке Н. 3). От Н вправо откладываем НК, приближенно равную по длине данной стороне. 4). От К как от вершины строим данный угол с транспортира ( или по методике построения угла) 5). Из центра О проводим к этой стороне угла перпендикуляр ОТ по стандартному методу. 6). Через точку пересечения ОТ и окружности проводим параллельно КТ касательную к окружности. Точку ее пересечения с прямой НК обозначим А. Это вершина угла заданной величины. 7). От А откладываем длину данной стороны. Ставим точку В. ВН по свойству касательной из одной точки равен длине отрезка от В до точки касания окружности с третьей стороной. 8). Раствором циркуля, равным ВН, проводим из В, как из центра, полуокружность до пересечения с окружностью в точке Е. 9). Из В через т.Е проводим касательную до пересечения с прямой, проведенной из вершины А, т.е. со второй стороной угла А. Точка пересечения С будет третьей вершиной треугольника. Треугольник АВС построен.
Если провести сечение пирамиды через ее высоту перпендикулярно боковой грани, то получится прямоугольный треугольник CNK, где CN - высота пирамиды - один из катетов треугольника, NK - второй катет (след сечения основания пирамиды, N - прямой угол, K - угол равный 60 градусам (из условия), CK - гипотенуза (высота боковой грани пирамиды).
Центр O вписанного в пирамиду шара лежит на CN так, что ON равно его радиусу. Из точки O проведем перпендикуляр на гипотенузу до точки M. OM также должен быть равен радиусу шара. Рассматривая это построение, нетрудно показать, что точка O делит высоту CN в отношении 1:2. Таким образом радиус вписанного шара равен 3 (9/3).
Объем шара (4/3)*π*3*3*3 = π*36 или примерно 3.14*36 = 113
Понадобятся :
циркуль, линейка, угольник с прямым углом для построения параллельных прямых, транспортир, карандаш.
1). Чертим окружность данного радиуса.
2).Под ней чертим произвольную прямую с точкой касания с окружностью в точке Н.
3). От Н вправо откладываем НК, приближенно равную по длине данной стороне.
4). От К как от вершины строим данный угол с транспортира ( или по методике построения угла)
5). Из центра О проводим к этой стороне угла перпендикуляр ОТ по стандартному методу.
6). Через точку пересечения ОТ и окружности проводим параллельно КТ касательную к окружности. Точку ее пересечения с прямой НК обозначим А. Это вершина угла заданной величины.
7). От А откладываем длину данной стороны. Ставим точку В. ВН по свойству касательной из одной точки равен длине отрезка от В до точки касания окружности с третьей стороной.
8). Раствором циркуля, равным ВН, проводим из В, как из центра, полуокружность до пересечения с окружностью в точке Е.
9). Из В через т.Е проводим касательную до пересечения с прямой, проведенной из вершины А, т.е. со второй стороной угла А. Точка пересечения С будет третьей вершиной треугольника.
Треугольник АВС построен.