Если <А=45 градусов,а треугольник прямоугольный,то
<А=<В=45 градусов
Треугольник не только прямоугольный,но и равнобедренный,тогда
АС=СВ=4
Площадь треугольника-половина произведения высоты на основание
S=4•4:2=8 ед в квадрате
Номер 2
Площадь прямоугольного треугольника -половина произведения катетов
S=5•4:2=10 ед в квадрате
Номер 3
АК отсекла от квадрата трапецию
Ее основания
АВ=5
СК=5-4=1
СВ=5 Это высота
Площадь трапеции-произведение полусуммы оснований на высоту
S=(5+1):2•5=15 ед в квадрате
Номер 4
Провели высоту из точки В на основание АС,образовались два прямоугольных треугольника,у одного из них <С=30 градусов.В прямоугольном треугольнике катет,лежащий против угла 30 градусов,равен половине гипотенузы.В данном конкретном случае-гипотенуза ВС=8,а катет-высота,проведённая из точки В
Высота равна
8:2=4
S=9•4:2=18 ед в квадрате
Номер 5
<BDC+<ADB=180 градусов,как смежные углы
<АDB=180-135=45 градусов
Треугольник АВD прямоугольный,равнобедренный,углы при его основании равны по 45 градусов,а
Нарисуй чертеж ВМ=МС=а AN=ND=b (это обозничили мы так) треугольники APN и MPB подобны с коэффициентом b/a,и высоты тоже
треуг. NQD и CQM подобны с тем же коэфф b/a и высоты тоже. но если у треуг. APN и NQD AN=ND, то и высоты равны. Т.е. точки P и Q находятся на одинаковом расстоянии от AD что и требовалось доказать.
если по поводу высот , что они равны , непонятка, то это следует из того, что отношения высот малого и большого треуг. равно одному и тому же коэффициенту, а сумма этих высот постоянна (высота трапеции)
ответ:Номер 1
Если <А=45 градусов,а треугольник прямоугольный,то
<А=<В=45 градусов
Треугольник не только прямоугольный,но и равнобедренный,тогда
АС=СВ=4
Площадь треугольника-половина произведения высоты на основание
S=4•4:2=8 ед в квадрате
Номер 2
Площадь прямоугольного треугольника -половина произведения катетов
S=5•4:2=10 ед в квадрате
Номер 3
АК отсекла от квадрата трапецию
Ее основания
АВ=5
СК=5-4=1
СВ=5 Это высота
Площадь трапеции-произведение полусуммы оснований на высоту
S=(5+1):2•5=15 ед в квадрате
Номер 4
Провели высоту из точки В на основание АС,образовались два прямоугольных треугольника,у одного из них <С=30 градусов.В прямоугольном треугольнике катет,лежащий против угла 30 градусов,равен половине гипотенузы.В данном конкретном случае-гипотенуза ВС=8,а катет-высота,проведённая из точки В
Высота равна
8:2=4
S=9•4:2=18 ед в квадрате
Номер 5
<BDC+<ADB=180 градусов,как смежные углы
<АDB=180-135=45 градусов
Треугольник АВD прямоугольный,равнобедренный,углы при его основании равны по 45 градусов,а
АВ=АD=8
S=(8+7)•8:2=60 ед в квадрате
Объяснение:
ВМ=МС=а
AN=ND=b (это обозничили мы так)
треугольники APN и MPB подобны с коэффициентом b/a,и высоты тоже
треуг. NQD и CQM подобны с тем же коэфф b/a и высоты тоже.
но если у треуг. APN и NQD AN=ND, то и высоты равны. Т.е. точки P и Q находятся на одинаковом расстоянии от AD
что и требовалось доказать.
если по поводу высот , что они равны , непонятка, то это следует из того, что отношения высот малого и большого треуг. равно одному и тому же коэффициенту, а сумма этих высот постоянна (высота трапеции)