Ребра прямоугольного параллелепипеда, выступающие из одной крыши, равны 1 см, 2 см, 3 см. Найдите высоту и радиус основания нарисованного снаружи цилиндра на этом параллелепипеде. Сколько таких цилиндров?
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
Пусть отрезки, на которые делит гипотенузу высота, проведенная к гипотенузе, будут х и (15-х)
Из равенства 9²=х*15, откуда х= 81/15=5,4, тогда другой отрезок равен 15-5,4= 9,6
Итак, один отрезок равен 5, 4см другой 9,6см.
Можно было бы решить и так. Квадрат другого катета, равного 12, есть произведение гипотенузы на проекцию этого катета на гипотенузу. Иными словами, 12²=у*15, где у- проекция катета на гипотенузу, откуда у =144/15=9,6.
Один отрезок равен 9,6см, тогда другой 15-9,6=5,4/см/
Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
1. По теореме Пифагора найдем гипотенузу.
Она равна √(9²+12²)=√(81+144)=15/см/
Пусть отрезки, на которые делит гипотенузу высота, проведенная к гипотенузе, будут х и (15-х)
Из равенства 9²=х*15, откуда х= 81/15=5,4, тогда другой отрезок равен 15-5,4= 9,6
Итак, один отрезок равен 5, 4см другой 9,6см.
Можно было бы решить и так. Квадрат другого катета, равного 12, есть произведение гипотенузы на проекцию этого катета на гипотенузу. Иными словами, 12²=у*15, где у- проекция катета на гипотенузу, откуда у =144/15=9,6.
Один отрезок равен 9,6см, тогда другой 15-9,6=5,4/см/
ответ 9,6см; 5,4см.