Ребро куба а = х – 3. Напишите: а) выражение для нахождения объема куба; б) выражение для нахождения площади поверхности куба, используя формулу S = 6a2.
Проекции точек D и С на плоскость а - это перпендикуляры DD1 и СС1, опущенные из точек D и С на плоскость а. Соединив точки А, В, С1 и D1 получим проекцию нашего ромба АВСD на плоскость а. Это будет параллелограмм АВС1D1 с противоположными сторонами АВ, С1D1 и ВС1, АD1 . В прямоугольном треугольнике АНD DH=AD*Sinф. Если Sinф=√5/4, то DН=9*√5/4. Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения. В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16. S=9*45√3/16=405√3/16
P1K - высота треугольника РР1N1
P1K = 8*корень(2)
P1Q = корень(8^2+15^2)=17
tg(KQP1) = P1K /P1Q = 8*корень(2)/17
угол KQP1= arctg( 8*корень(2)/17) ~ 33,64425 градус
2)
АК=3*корень(3^2+2^2)=3*корень(13)
АC=3*корень(2)
CК=3*корень(3^2+2^2)=3*корень(13)
CO - высота треугольника АСК
СО*АК=АС*корень(АК*АК-АС*АС/4)
СО=АС*корень(АК*АК-АС*АС/4)/АК=АС*корень(1-(АС/(2АК))^2)=
СО=3*корень(2)*корень(1-(3*корень(2)/(2*3*корень(13)))^2)=15/КОРЕНЬ(13)
tg(alpha)=C1C/СО=5*КОРЕНЬ(13)/15= КОРЕНЬ(13)/3
угол alpha=arctg(КОРЕНЬ(13)/3) ~ 50,23784 градус
3)
C1G=5*корень(2^2+1^2)=5*корень(5)
А1C1=5*корень(2)
A1G=5*корень(5)
A1O - высота треугольника А1С1G
A1О*C1G=А1С1*корень(C1G^2 –А1С1^2 /4)
A1О= А1С1*корень(C1G^2 –А1С1^2 /4)/ C1G= А1С1*корень(1 –(А1С1/2 C1G) ^2) = =5*корень(2)*корень(1 –(5*корень(2)/(2*5*корень(5))) ^2)=3*корень(5)
tg(alpha)=A1A/A1О=9/(3*КОРЕНЬ(5)) = 3/КОРЕНЬ(5)
угол alpha=arctg(3/КОРЕНЬ(5)) ~ 53,30077 градус
Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения.
В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16.
S=9*45√3/16=405√3/16