Ребро подошвы правильной треугольной пирамиды SABC равно 8 корень из 3. Угол между боковым ребром SC и высотой пирамиды равен 30^0. Начертите схему пирамиды SABC. Обозначь буквой H точку, в которой S будет проекцией на подошву крыши. Найди высоту пирамиды. Найди боковую грань пирамиды.
ответ:Побудувати: ∆АВС - рівнобедрений за основою AC i радіусом описаного кола R. Побудова:
1) Будуємо коло з центром в довільній точці О i заданого радіусу R.
2) Позначаємо на колі довільну точку А.
3) Вимірюємо циркулем довжину основи АС (АС = а).
4) Будуємо дугу з центром в точці A i радіусом а.
5) Позначаємо точку перетину двох кіл В.
6) Будуємо хорду АВ.
7) Будуємо коло довільного радіуса з центром в точці А.
8) Будуємо коло цього ж радіуса з центром в точці В.
9) Позначаємо точку перетину кіл D.
10) Будуємо пряму DO - серединний перпендикуляр до хорди АВ.
11) Точка перетину прямої DO i кола позначаємо С.
12) СЕ - висота, медіана, бісектриса ∆АВС.
Отже, ∆АВС - рівнобедрений.
Задача має два розв'язки.
Объяснение:извини на даный момент нету на чём нарисовать
ответ:Побудувати: ∆АВС - рівнобедрений за основою AC i радіусом описаного кола R. Побудова:
1) Будуємо коло з центром в довільній точці О i заданого радіусу R.
2) Позначаємо на колі довільну точку А.
3) Вимірюємо циркулем довжину основи АС (АС = а).
4) Будуємо дугу з центром в точці A i радіусом а.
5) Позначаємо точку перетину двох кіл В.
6) Будуємо хорду АВ.
7) Будуємо коло довільного радіуса з центром в точці А.
8) Будуємо коло цього ж радіуса з центром в точці В.
9) Позначаємо точку перетину кіл D.
10) Будуємо пряму DO - серединний перпендикуляр до хорди АВ.
11) Точка перетину прямої DO i кола позначаємо С.
12) СЕ - висота, медіана, бісектриса ∆АВС.
Отже, ∆АВС - рівнобедрений.
Задача має два розв'язки.
Объяснение:извини на даный момент нету на чём нарисовать