Смотрите вложенный файл. Там чертеж. Допустим,около окружности описан квадрат(правильный четырехугольник),а в окружность вписан квадрат так,что вершины квадрата совпадают с точками касания окружности и описанного квадрата. (на чертеже все видно!) Сторона описанного квадрата равна 2а. В точке касания она делится пополам,и эти "половинки" равны а. Образуется прямоугольный треугольник. Из него получаем: а²+а²=2а² Тогда сторона вписанного квадрата равна а√2 Периметр вписанного квадрата равен p=4а√2 Периметр описанного квадрата равен P=8а p/P=(4а√2)/(8а)=√2/2(это отношение периметров) Площадь вписанного квадрата s=(a√2)²=2a² Площадь описанного квадрата S=S₂=(2a)²=4a² Отношение площадей: s/S=(2a²)/(4a²)=1/2
Ясно, что минимальная длина отрезка MN будет при совпадении точек B и D и точек С и Е. В этом случае M'N' станет средней линией треугольника АВС и будет равна AB (AD)/2.
Оставим точку Е совпадающей с точкой С, а точку D отметим в любом месте на продолжении стороны АВ за точку В.
Тогда M'N - средняя линия треугольника АDC и равна AD/2.
Отметим точку Е в любом месте на продолжении стороны ВС за точку С. Получим треугольник M'MN в котором сторона MN > M'N, так как если провести окружность с центром в точке N радиусом NM', то касательная M'H к этой окружности будет пересекать прямую MN в точке Н.
Допустим,около окружности описан квадрат(правильный четырехугольник),а в окружность вписан квадрат так,что вершины квадрата совпадают с точками касания окружности и описанного квадрата. (на чертеже все видно!)
Сторона описанного квадрата равна 2а. В точке касания она делится пополам,и эти "половинки" равны а.
Образуется прямоугольный треугольник. Из него получаем:
а²+а²=2а²
Тогда сторона вписанного квадрата равна а√2
Периметр вписанного квадрата равен p=4а√2
Периметр описанного квадрата равен P=8а
p/P=(4а√2)/(8а)=√2/2(это отношение периметров)
Площадь вписанного квадрата s=(a√2)²=2a²
Площадь описанного квадрата S=S₂=(2a)²=4a²
Отношение площадей:
s/S=(2a²)/(4a²)=1/2
ответ: √2/2;1/2
Доказательство в объяснении.
Объяснение:
Ясно, что минимальная длина отрезка MN будет при совпадении точек B и D и точек С и Е. В этом случае M'N' станет средней линией треугольника АВС и будет равна AB (AD)/2.
Оставим точку Е совпадающей с точкой С, а точку D отметим в любом месте на продолжении стороны АВ за точку В.
Тогда M'N - средняя линия треугольника АDC и равна AD/2.
Отметим точку Е в любом месте на продолжении стороны ВС за точку С. Получим треугольник M'MN в котором сторона MN > M'N, так как если провести окружность с центром в точке N радиусом NM', то касательная M'H к этой окружности будет пересекать прямую MN в точке Н.
MN = MH+HN =>
MN >(M'N = AD/2)
=> MN >AD/2.
Что и требовалось доказать.