Ребят Боковое ребро правильной четырехугольной пирамиды равно 6 см и образует с плоскостью основания пирамиды угол 30°. а) Найдите высоту пирамиды. б) Найдите площадь боковой поверхности пирамиды.
1. Построим перпендикуляр СН, чтобы показать расстояние между параллельными большими сторонами ВС и AD, и перпендикуляр DO, чтобы показать расстояние между меньшими сторонами АВ и CD. Найдем AD, зная площадь параллелограмма и его высоту СН: Sabcd= AD*CH, отсюда AD=S/CH=96/8=12 дм 2. Зная периметр, найдем АВ: Pabcd=2AD+2AB, отсюда AB=(P-2AD)/2=(44-24)/2= 10 дм 3. В прямоугольном треугольнике CHD найдем по теореме Пифагора DH: DH = √DC²- CH²= √10² - 8² =√36 = 6 дм 4. Треугольники AOD и DНС подобны по первому признаку подобия: два угла одного треугольника соответственно равны двум углам другого. В нашем случае:<AOD=<DHC=90°, <BCD=<CDH как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей CD. Но <BCD=<OAD, поэтому <OAD=<CDH. 5. Для подобных треугольников можно записать: AD/CD=OD/DH, отсюда OD=AD*DH/CD=12*6/10=7.2 дм
Треугольники КSH и МSH прямоугольные, катет SH общий, и равны углы, противолежащие этому катету, значит
ΔКSH = ΔМSH по катету и противолежащему острому углу, ⇒
КН = МН, значит СМНК - квадрат, СН - его диагональ, значит и биссектриса треугольника АВС. А так как треугольник равнобедренный, то и медиана, ⇒АН = ВН.
б) КН - средняя линия ΔАВС, так как проходит через середину АВ и параллельна ВС.
Sabcd= AD*CH, отсюда
AD=S/CH=96/8=12 дм
2. Зная периметр, найдем АВ:
Pabcd=2AD+2AB, отсюда
AB=(P-2AD)/2=(44-24)/2= 10 дм
3. В прямоугольном треугольнике CHD найдем по теореме Пифагора DH:
DH = √DC²- CH²= √10² - 8² =√36 = 6 дм
4. Треугольники AOD и DНС подобны по первому признаку подобия: два угла одного треугольника соответственно равны двум углам другого. В нашем случае:<AOD=<DHC=90°, <BCD=<CDH как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей CD. Но <BCD=<OAD, поэтому <OAD=<CDH.
5. Для подобных треугольников можно записать:
AD/CD=OD/DH, отсюда
OD=AD*DH/CD=12*6/10=7.2 дм
а) Если боковая грань перпендикулярна основанию, то высота лежит в этой грани.
Значит основание высоты - точка Н - лежит на гипотенузе.
Проведем из точки Н перпендикуляры НК и НМ к катетам АС и ВС.
НК и НМ - проекции наклонных SK и SM на плоскость основания, значит SK⊥AC и SM⊥BC по теореме о трех перпендикулярах. Тогда
∠SKH = ∠SMH = β - углы наклона боковых граней к плоскости основания.
Треугольники КSH и МSH прямоугольные, катет SH общий, и равны углы, противолежащие этому катету, значит
ΔКSH = ΔМSH по катету и противолежащему острому углу, ⇒
КН = МН, значит СМНК - квадрат, СН - его диагональ, значит и биссектриса треугольника АВС. А так как треугольник равнобедренный, то и медиана, ⇒АН = ВН.
б) КН - средняя линия ΔАВС, так как проходит через середину АВ и параллельна ВС.
КН = а/2.
ΔSKH: tgβ = SH / HK
SH = HK · tgβ = a/2 · tgβ