РЕБЯТ. Дан равнобедренный треугольник АВС( АВ=ВС), где А(1;-2;1) С(3;2;3) Точка В лежит на оси ординат А) Найдите стороны треугольника АВС Б) Найдите медиану проведенную из вершины В
Пусть угол А - х, тогда угол B - тоже х, а угол Bad = x/2 рассмотрим треугольник АДБ - угол Б равен 180 градусов -( 110 градусов + x/2) рассмотрим треугольник АБС угол Б равен 180 - 2х потом вычитаем из первого уравнения второе, в правой части у нас ноль (углы Б сократились) в левой части 2x-110-x/2 иксы в правую часть градусы в левую часть переносим итого у нас получается 1,5х=110 градусов x=углу А= углу С= 73 и 1/3 градусов (в ответе переведи в десятичные 73,33) Угол б равен 180 градусов минус 2х = 33 и 1/3 градуса (33.33)
В подобных треугольниках углы равны))) поэтому основания должны быть пропорциональны: 12 / 18 = 2/3 --это возможный коэффициент подобия... т.е. нужно доказать или равенство углов при основаниях в этих (разных) треугольниках (в каждом треугольнике они равны, т.к. треугольники равнобедренные))), или вычислить отношение боковых сторон, должно получиться тоже 2/3 одна боковая сторона 10, другая = √(12²+9²) = √(9*(16+9)) = √(9*25) = 3*5 = 15 10 / 15 = 2/3 ---треугольники подобны... проверим углы при основаниях: cos(x1) = 6/10 = 0.6 cos(x2) = 9/15 = 3/5 = 0.6 и углы при основаниях равны
поэтому основания должны быть пропорциональны: 12 / 18 = 2/3 --это
возможный коэффициент подобия...
т.е. нужно доказать или равенство углов при основаниях в этих (разных) треугольниках (в каждом треугольнике они равны, т.к. треугольники равнобедренные))), или вычислить отношение боковых сторон, должно получиться тоже 2/3
одна боковая сторона 10, другая = √(12²+9²) = √(9*(16+9)) = √(9*25) = 3*5 = 15
10 / 15 = 2/3 ---треугольники подобны...
проверим углы при основаниях:
cos(x1) = 6/10 = 0.6
cos(x2) = 9/15 = 3/5 = 0.6 и углы при основаниях равны