Определение: Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым".
Прямая А1С принадлежит плоскости диагонального сечения куба. Прямая B1D1 принадлежит плоскости верхнего основания куба. Эти плоскости взаимно перпендикулярны. Значит, если мы проведем прямую параллельную А1С в плоскости, содержащей плоскость диагонального сечения АА1С1С так, что эта прямая будет пересекаться с прямой B1D1, то угол между ними будет равен 90 градусов.
Или координатным методом: привяжем к вершине В куба прямоугольную систему координат.
Примем сторону куба равной 1.Тогда имеем точки:
А1(0;1;1), С(1;0;0), B1(0;0;1), D1(1;1;1) и соответственно векторы:
А1С{1;-1;-1} и B1D1{1;1;0}. Угол между векторами определяется по его косинусу, который равен скалярному произведению этих векторов, деленному на произведение их модулей.
Скалярное произведение векторов А1С и B1D1 равно сумме произведений соответствующих координат, то есть:
1·1 + (-1)·1 + (-1)·0 = 0. Этого нам достаточно, так как если скалярнле произведение векторов равно нулю, эти вектора перпендикулярны друг другу.
Пусть треугольники ABC и A1B1C1 такие, что AB=A1B1, AC=A1C1, BC=B1C1. Требуется доказать, что треугольники равны. Допустим, что треугольники не равны. Тогда ∠ A ≠ ∠ A1, ∠ B ≠ ∠ B1, ∠ C ≠ ∠ C1 одновременно. Иначе треугольники были бы равны по первому признаку. Пусть треугольник A1B1C2 – треугольник, равный треугольнику ABC, у которого вершина С2 лежит в одной полуплоскости с вершиной С1 относительно прямой A1B1. Пусть D – середина отрезка С1С2. треугольники A1C1C2 и B1C1C2 равнобедренные с общим основанием С1С2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой С1С2. Прямые A1D и B1D не совпадают, так как точки A1, B1, D не лежат на одной прямой. Но через точку D прямой С1С2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.
Угол равен 90°
Объяснение:
Определение: Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым".
Прямая А1С принадлежит плоскости диагонального сечения куба. Прямая B1D1 принадлежит плоскости верхнего основания куба. Эти плоскости взаимно перпендикулярны. Значит, если мы проведем прямую параллельную А1С в плоскости, содержащей плоскость диагонального сечения АА1С1С так, что эта прямая будет пересекаться с прямой B1D1, то угол между ними будет равен 90 градусов.
Или координатным методом: привяжем к вершине В куба прямоугольную систему координат.
Примем сторону куба равной 1.Тогда имеем точки:
А1(0;1;1), С(1;0;0), B1(0;0;1), D1(1;1;1) и соответственно векторы:
А1С{1;-1;-1} и B1D1{1;1;0}. Угол между векторами определяется по его косинусу, который равен скалярному произведению этих векторов, деленному на произведение их модулей.
Скалярное произведение векторов А1С и B1D1 равно сумме произведений соответствующих координат, то есть:
1·1 + (-1)·1 + (-1)·0 = 0. Этого нам достаточно, так как если скалярнле произведение векторов равно нулю, эти вектора перпендикулярны друг другу.
Доказательство.
Пусть треугольники ABC и A1B1C1 такие, что AB=A1B1, AC=A1C1, BC=B1C1. Требуется доказать, что треугольники равны.
Допустим, что треугольники не равны. Тогда ∠ A ≠ ∠ A1, ∠ B ≠ ∠ B1, ∠ C ≠ ∠ C1 одновременно. Иначе треугольники были бы равны по первому признаку.
Пусть треугольник A1B1C2 – треугольник, равный треугольнику ABC, у которого вершина С2 лежит в одной полуплоскости с вершиной С1 относительно прямой A1B1.
Пусть D – середина отрезка С1С2. треугольники A1C1C2 и B1C1C2 равнобедренные с общим основанием С1С2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой С1С2. Прямые A1D и B1D не совпадают, так как точки A1, B1, D не лежат на одной прямой. Но через точку D прямой С1С2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.