1) ADB=CDB по третьему признаку (три стороны одного равны трём сторонам другого) AD=CD и AB=CB по условию задачи, DB - общая сторона.
2) ABO=DEO по первому признаку (две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника) BO=EO и AO=DO по условию задачи
угол BOA равен углу EOD так как они вертикальные.
3) ADC=BEC по второму признаку (Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам второго треугольника, то треугольники равны)
AC=DC и углы DAC=EBC по условию задачи. угол ВСА общий.
Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.
смотри ниже
Объяснение:
1) ADB=CDB по третьему признаку (три стороны одного равны трём сторонам другого) AD=CD и AB=CB по условию задачи, DB - общая сторона.
2) ABO=DEO по первому признаку (две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника) BO=EO и AO=DO по условию задачи
угол BOA равен углу EOD так как они вертикальные.
3) ADC=BEC по второму признаку (Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам второго треугольника, то треугольники равны)
AC=DC и углы DAC=EBC по условию задачи. угол ВСА общий.
Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.