Обозначим высоту пирамиды Н, высоту боковой грани h, сторону основания а (в основании квадрат).
площадь основания = площадь полной поверхности - пощадь боковой поверхности = 96 см^2 - 80 см^2 =16 см^2
Т.к. в основании квадрат, площадь основания = а^2 =16 см^2
а=4
Площадь поверхности одной боковой грани = а*h/2 =80/4 =20 cм^2
Высота боковой грани h = 20*2/4=10 см
Рассмотрим треугольник, образованный высотой пирмиды, высотой боковой грани и отрезком (обозначим его длину с), соединяющим точки их пересечения с основанием, равным полвине стороны основания. Это прямоугольный треугольник, т.е. h^2 = c^2 + H^2
c=a/2 = 2 см
H = корень квадратный (h^2 - c^2) = корень квадратный (96)=4 корня квадратных из 6
В прямоугольном параллелепипеде противоположные грани параллельны, равны и являются прямоугольниками. Таким образом, у него три пары равных граней.
84 : 2 = 42 (см) - площадь двух боковх граней с общим кантом. 3 + 4 = 7 (см) - общая длина двух кантов при основании у этих граней. 42 : 7 = 6 (см) - высота параллелепипеда. В основании параллелепипеда лежит прямоугольник со сторонами 3 см и 4 см. Диагональ этого прямоугольника разбивает его на два равные прямоугольные треугольника. Такой треугольник (с катетами 3 и 4) называется египетский, его гипотенуза равна 5 см (здесь мы обошлись без теоремы пифагора) Эта гипотенуза является диагональю основания. 6 * 5 = 30 (см^2) - площадь диагонального сечения. ответ: 30 см^2
Здесь я обошелся без обозначений параллелограмма, если не разберешься, то в комментах объясню с обозначениями.
Обозначим высоту пирамиды Н, высоту боковой грани h, сторону основания а (в основании квадрат).
площадь основания = площадь полной поверхности - пощадь боковой поверхности = 96 см^2 - 80 см^2 =16 см^2
Т.к. в основании квадрат, площадь основания = а^2 =16 см^2
а=4
Площадь поверхности одной боковой грани = а*h/2 =80/4 =20 cм^2
Высота боковой грани h = 20*2/4=10 см
Рассмотрим треугольник, образованный высотой пирмиды, высотой боковой грани и отрезком (обозначим его длину с), соединяющим точки их пересечения с основанием, равным полвине стороны основания. Это прямоугольный треугольник, т.е. h^2 = c^2 + H^2
c=a/2 = 2 см
H = корень квадратный (h^2 - c^2) = корень квадратный (96)=4 корня квадратных из 6
84 : 2 = 42 (см) - площадь двух боковх граней с общим кантом.
3 + 4 = 7 (см) - общая длина двух кантов при основании у этих граней.
42 : 7 = 6 (см) - высота параллелепипеда.
В основании параллелепипеда лежит прямоугольник со сторонами 3 см и 4 см. Диагональ этого прямоугольника разбивает его на два равные прямоугольные треугольника. Такой треугольник (с катетами 3 и 4) называется египетский, его гипотенуза равна 5 см (здесь мы обошлись без теоремы пифагора)
Эта гипотенуза является диагональю основания.
6 * 5 = 30 (см^2) - площадь диагонального сечения.
ответ: 30 см^2
Здесь я обошелся без обозначений параллелограмма, если не разберешься, то в комментах объясню с обозначениями.