1. а) внутри окружности б) снаружи окружности в) на окружности
2.
Радиус равен 10,3см/2 = 5,15 см.
5,15см >4,15см⇒ окружность и прямая пересекаются.
5,15 см< 2дм⇒ не пересекаются.
5,15 см<103 мм⇒не пересекаются.
5,15 cм=5,15 см⇒касаются в одной точке.
5,15 см<1дм 3 см⇒.не пересекаются.
3.а) прямая является секущей к окружности (пересекает ее)
б) д=42 см - прямая и окружность не пересекаются
в) прямая является секущей
г) д=12см прямая и окружность не пересекаются
д) д=5 см прямая является касательной к окружности
4.Касательная только "касается" окружности, а но пересекает 3) 2 касательных. Можно провести только 2 точки, они должны касаться окружности с разных сторон.
5.
4+5 = 9
Окружности касаются друг друга в одной точке и расстояние между центрами всегда равно сумме радиусов этих окружностей.
6.гол А=90. окружность с центром О касается углаА в точках В и С , из центра проводим радиусы ОВ и ОД , перпендикулярные сторонам угла, получаем прямоугольник АВОД, у которого ОВ=ОД=АВ=АД ,АВОД квадрат, у которого хорда ВД=40 = диагонали квадрата, диагонали квадрата равны и пересекаются под углом 90 град. и делятся в точке пересечения К пополам
Расстояние ОК = 40/2=20
7.1) т. к d = 1 дм , R= 0.8 дм, r= 0. 2 дм => R+r= 0.8 дм+ 0.2 дм = 1 дм=> d= R+r => окружности касаются
2) т. к d= 40 см, R= 110 см, r= 70 см => R+r= 110 см+ 70 см= 180 см => d < R+r=> окружности пересекаются в 2 точках
3) т. к d=12 см, R= 5 см , r=3 см => R+r= 5 см + 3 см = 8 см=> d > R+r => окружности не соприкасаются и общих точек не имеют
ᐃ АВС - осевое сечение конуса, вписанного в шар с центром О. АВ=ВС - его образующие АС= диаметр основания конуса НС- радиус основания конуса ВН -высота конуса ВМ- диаметр шара ВО - радиус шара
Формула объема конуса
V=⅓ πr²h
Для нахождения объёма необходимо знать высоту ВН и радиус r конуса.
Высота ВН равна разности ВМ и МН Соединим точку М диаметра шара и точку С диаметра конуса. Рассмотрим треугольник ВСМ. ∠ВСМ - прямой, поскольку опирается на диаметр окружности. Гипотенуза этого треугольника равна 2R и равна 10 см Катет ВС - образующая конуса и равен 8 см Катет МС по теореме Пифагора МС =√(100-64)=6 см Чтобы найти r, обозначим отрезок ОН = х. Тогда r=НС ВН= 5+х МН=5-х Выразим высоту НС²= r² через известные величины треугольника ВСМ r²=ВС² - ВН² r²=МС²-МН² Приравняем выражения, обозначающие значение r² (иначе НС²) ВС² - ВН²=МС²-МН² 8² -(5+х)²= 6²-(5-х)² 64 - 25 -10х -х²=36 -25 +10х -х² 64 -10х =36 +10 х 28=20х х=1,4 ОН=1,4 Из треугольника МНС найдем НС- радиус основания конуса r²=МС²- МН² МН=R - ОН=5-1,4 = 3,6 см r²=36 -12,96=23,04
r=√23,04=4,8 см
V конуса=⅓ πr²h
V=π*4,8²*6,4:3=π*49,152 см³
или приближенно 154,4 см³ ( если на калькуляторе умножать на значение π )
-----
Вариант решения:
Для нахождения объёма необходимо знать высоту ВН и радиус r конуса. Рассмотрим треугольник ВСМ.∠ВСМ - прямой, поскольку опирается на диаметр окружности. Гипотенуза этого треугольника равна 2R и равна 10 см Катет ВС - образующая конуса и равен 8 см В прямоугольном треугольнике катет есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой. Иными словами, квадрат катета равен произведению всей гипотенузы на проекцию этого катета на гипотенузу. В треугольнике ВСМ отрезок ВН - проекция катета ВС на гипотенузу. ВС²=ВН*ВМ 64=10*ВН ВН=6,4 - это высота конуса. СН - радиус конуса, который в то же время является высотой прямоугольного треугольника МВС, проведенной к гипотенузе. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой; ВН мы нашли, он равен 6,4. Отрезок НМ равен 10-6,4=3,6 СН²=6,4*3,6=23,04 СН=r=4,8 V конуса=⅓ πr²h V=π*4,8²*6,4:3=π*49,152 см³
1. а) внутри окружности б) снаружи окружности в) на окружности
2.
Радиус равен 10,3см/2 = 5,15 см.
5,15см >4,15см⇒ окружность и прямая пересекаются.
5,15 см< 2дм⇒ не пересекаются.
5,15 см<103 мм⇒не пересекаются.
5,15 cм=5,15 см⇒касаются в одной точке.
5,15 см<1дм 3 см⇒.не пересекаются.
3.а) прямая является секущей к окружности (пересекает ее)
б) д=42 см - прямая и окружность не пересекаются
в) прямая является секущей
г) д=12см прямая и окружность не пересекаются
д) д=5 см прямая является касательной к окружности
4.Касательная только "касается" окружности, а но пересекает 3) 2 касательных. Можно провести только 2 точки, они должны касаться окружности с разных сторон.
5.
4+5 = 9
Окружности касаются друг друга в одной точке и расстояние между центрами всегда равно сумме радиусов этих окружностей.
6.гол А=90. окружность с центром О касается углаА в точках В и С , из центра проводим радиусы ОВ и ОД , перпендикулярные сторонам угла, получаем прямоугольник АВОД, у которого ОВ=ОД=АВ=АД ,АВОД квадрат, у которого хорда ВД=40 = диагонали квадрата, диагонали квадрата равны и пересекаются под углом 90 град. и делятся в точке пересечения К пополам
Расстояние ОК = 40/2=20
7.1) т. к d = 1 дм , R= 0.8 дм, r= 0. 2 дм => R+r= 0.8 дм+ 0.2 дм = 1 дм=> d= R+r => окружности касаются
2) т. к d= 40 см, R= 110 см, r= 70 см => R+r= 110 см+ 70 см= 180 см => d < R+r=> окружности пересекаются в 2 точках
3) т. к d=12 см, R= 5 см , r=3 см => R+r= 5 см + 3 см = 8 см=> d > R+r => окружности не соприкасаются и общих точек не имеют
вроде бы так
Рассмотрим рисунок, вложенный в решение.
ᐃ АВС - осевое сечение конуса, вписанного в шар с центром О.
АВ=ВС - его образующие
АС= диаметр основания конуса
НС- радиус основания конуса
ВН -высота конуса
ВМ- диаметр шара
ВО - радиус шара
Формула объема конуса
V=⅓ πr²h
Для нахождения объёма необходимо знать высоту ВН и радиус r конуса.
Высота ВН равна разности ВМ и МН
Соединим точку М диаметра шара и точку С диаметра конуса.
Рассмотрим треугольник ВСМ.
∠ВСМ - прямой, поскольку опирается на диаметр окружности.
Гипотенуза этого треугольника равна 2R и равна 10 см
Катет ВС - образующая конуса и равен 8 см
Катет МС по теореме Пифагора
МС =√(100-64)=6 см
Чтобы найти r, обозначим отрезок ОН = х.
Тогда
r=НС
ВН= 5+х
МН=5-х
Выразим высоту НС²= r² через известные величины треугольника ВСМ
r²=ВС² - ВН²
r²=МС²-МН²
Приравняем выражения, обозначающие значение r² (иначе НС²)
ВС² - ВН²=МС²-МН²
8² -(5+х)²= 6²-(5-х)²
64 - 25 -10х -х²=36 -25 +10х -х²
64 -10х =36 +10 х
28=20х
х=1,4
ОН=1,4
Из треугольника МНС найдем НС- радиус основания конуса
r²=МС²- МН²
МН=R - ОН=5-1,4 = 3,6 см
r²=36 -12,96=23,04
r=√23,04=4,8 см
V конуса=⅓ πr²h
V=π*4,8²*6,4:3=π*49,152 см³
или приближенно 154,4 см³ ( если на калькуляторе умножать на значение π )
-----
Вариант решения:
Для нахождения объёма необходимо знать высоту ВН и радиус r конуса.Рассмотрим треугольник ВСМ.∠ВСМ - прямой, поскольку опирается на диаметр окружности.
Гипотенуза этого треугольника равна 2R и равна 10 см
Катет ВС - образующая конуса и равен 8 см
В прямоугольном треугольнике катет есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой. Иными словами, квадрат катета равен произведению всей гипотенузы на проекцию этого катета на гипотенузу.
В треугольнике ВСМ отрезок ВН - проекция катета ВС на гипотенузу. ВС²=ВН*ВМ
64=10*ВН
ВН=6,4 - это высота конуса.
СН - радиус конуса, который в то же время является высотой прямоугольного треугольника МВС, проведенной к гипотенузе.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;
ВН мы нашли, он равен 6,4.
Отрезок НМ равен 10-6,4=3,6
СН²=6,4*3,6=23,04
СН=r=4,8
V конуса=⅓ πr²h
V=π*4,8²*6,4:3=π*49,152 см³