Так как боковые ребра пирамиды равны, ее высота проецируется в центр окружности, описанной около основания. Докажем это: Пусть МО - высота пирамиды. МА = МВ = МС по условию, МО - общий катет для треугольников МОА, МОВ и МОС, тогда эти треугольники равны по гипотенузе и катету, значит и ОА = ОВ = ОС. Т.е. О - центр описанной окружности.
Площадь основания по формуле Герона: р = (39 + 17 + 28)/2 = 84/2 = 42 см S = √(p(p - AB)(p - BC)(p - AC)) = √(42 · 3 · 2 · 25 · 14) = = √(6 · 7 · 3 · 2 · 25 · 2 · 7) = 6 · 7 · 5 = 210 см²
Радиус окружности, описанной около произвольного треугольника: R = AB·BC·AC / (4·S) = 39 · 17 · 28 / (4 · 210) = 22,1 см ОА = R = 22,1 см Из прямоугольного треугольника МОА по теореме Пифагора: МО = √(МА² - ОА²) = √(22,9² - 22,1²) = √((22,9 - 22,1)(22,9 + 22,1)) = = √(0,8 · 45) = √36 = 6 см V = 1/3 ·S · MO = 1/3 · 210 · 6 = 420 см³
Пусть АВ ∩ СD = О При пересечении двух прямых получаем пары равных углов : ∠AOD = ∠COB = x и ∠AOC = ∠DOB = y По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему : x + y + x = 278° 2 x + y = 278° 2 x + y = 278° ⇒ ⇒ x + y + x + y =360° 2 x + 2 y = 360° x + y = 180° Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒ х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98° Тогда у = 180° - х = 180° - 98° = 82° ответ : 98 ° ; 82° ; 98° ; 82°
Докажем это:
Пусть МО - высота пирамиды. МА = МВ = МС по условию, МО - общий катет для треугольников МОА, МОВ и МОС, тогда эти треугольники равны по гипотенузе и катету, значит и ОА = ОВ = ОС. Т.е. О - центр описанной окружности.
Площадь основания по формуле Герона:
р = (39 + 17 + 28)/2 = 84/2 = 42 см
S = √(p(p - AB)(p - BC)(p - AC)) = √(42 · 3 · 2 · 25 · 14) =
= √(6 · 7 · 3 · 2 · 25 · 2 · 7) = 6 · 7 · 5 = 210 см²
Радиус окружности, описанной около произвольного треугольника:
R = AB·BC·AC / (4·S) = 39 · 17 · 28 / (4 · 210) = 22,1 см
ОА = R = 22,1 см
Из прямоугольного треугольника МОА по теореме Пифагора:
МО = √(МА² - ОА²) = √(22,9² - 22,1²) = √((22,9 - 22,1)(22,9 + 22,1)) =
= √(0,8 · 45) = √36 = 6 см
V = 1/3 ·S · MO = 1/3 · 210 · 6 = 420 см³
По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему :
x + y + x = 278° 2 x + y = 278° 2 x + y = 278°
⇒ ⇒
x + y + x + y =360° 2 x + 2 y = 360° x + y = 180°
Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒
х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98°
Тогда у = 180° - х = 180° - 98° = 82°
ответ : 98 ° ; 82° ; 98° ; 82°