Задача 1 Сначала проверяем, подобны ли данные треугольники, если они подобны, то соотношение соответственных сторон должно быть правильным, значит: АС/А₁С₁=ВС/В₁С₁ 4/6=12/18 4*18=6*12 72=72 значит треугольники подобны Тогда составляем пропорцию с неизвестной стороной А₁В₁: АВ/АС=А₁В₁/А₁С₁ 10/4=А₁В₁/12 А₁В₁=10*12/4=30
Задача 2 Мы знаем что, площади подобных треугольников относятся как квадраты сходственных сторон., Значит: 18/288=9²/А₁В₁ А₁В₁=288*81/18==36
Задача 3 Рассмотрим треугольники АОВ и ДОС, они подобны по первому признаку (когда два угла одного треугольника соответственно равны двум углам другого треугольника), так как ∠АОВ=∠ДОС как вертикальные, а ∠АВД=∠ВДС как внутренние накрест лежащие (так как АВ параллельно ДС, ведь АВСД трапеция и АВ и СД ее основания) Тогда составляем пропорцию отношения сторон подобных треугольников: ДО/ДС=ОВ/АВ 20/50=8/АВ АВ=50*8/20=20 ответ АВ=20
5 номер
В равнобедренном треугольнике две стороны равны.
По неравенству сторон треугольника знаем, что сумма двух сторон треугольника не может быть меньше третьей.
Предположим, что третья сторона равна 4 см.
Проверим, 4+4<9 - не подходит.
9+9>4 - подходит, значит, третья сторона = 9 см
6 номер
1)Рассмотрим треугольник DME:
предположим ,что угол DME - тупой (будет смежным с острым углом этого треугольника) и
угол DEM - острый (так как двух углов тупых не может быть в треугольнике по определению и признаку треугольника) .
2)Если напротив большего угла в данном треугольнике лежит самая большая сторона,то DE>DM.
7 номер
<B = 180° - (79°+ 55°)= 46° .
<C = 180° - ( 46° + 55°) = 79° .
< А = 55° (по условию).
Сначала проверяем, подобны ли данные треугольники, если они подобны, то соотношение соответственных сторон должно быть правильным, значит:
АС/А₁С₁=ВС/В₁С₁
4/6=12/18
4*18=6*12
72=72 значит треугольники подобны
Тогда составляем пропорцию с неизвестной стороной А₁В₁:
АВ/АС=А₁В₁/А₁С₁
10/4=А₁В₁/12
А₁В₁=10*12/4=30
Задача 2
Мы знаем что, площади подобных треугольников относятся как квадраты сходственных сторон., Значит:
18/288=9²/А₁В₁
А₁В₁=288*81/18==36
Задача 3
Рассмотрим треугольники АОВ и ДОС, они подобны по первому признаку (когда два угла одного треугольника соответственно равны двум углам другого треугольника), так как ∠АОВ=∠ДОС как вертикальные, а ∠АВД=∠ВДС как внутренние накрест лежащие (так как АВ параллельно ДС, ведь АВСД трапеция и АВ и СД ее основания)
Тогда составляем пропорцию отношения сторон подобных треугольников:
ДО/ДС=ОВ/АВ
20/50=8/АВ
АВ=50*8/20=20
ответ АВ=20