Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а. Доказать: а - касательная к окружности. Доказательство: Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности. Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
1) Докажем, что данный четырёхугольник является прямоугольником.
Согласно условию задачи:
углы при нижнем основании - прямые;
4 угла при верхнем основании равны между собой и равны:
180 : 4 = 45°, в силу чего наклонные прямые являются биссектрисами верхних углов, а каждый из них равен:
45 + 45 = 90°.
В прямоугольнике противоположные стороны равны.
Следовательно, нижнее основание четырёхугольника равно 11.
2) Биссектрисы прямых углов делят их на 2 равных угла, каждый по 45°; следовательно, треугольники, прилегающие к боковым сторонам, является равнобедренными, и их нижние стороны равны 6.
3) Общая длина оснований этих треугольников составляет:
6 + 6 = 12
4) Полагая, что точки х и у, принадлежат нижней стороне прямоугольника, найдём расстояние между ними:
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а.
Доказать: а - касательная к окружности.
Доказательство:
Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности.
Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
1
Объяснение:
1) Докажем, что данный четырёхугольник является прямоугольником.
Согласно условию задачи:
углы при нижнем основании - прямые;
4 угла при верхнем основании равны между собой и равны:
180 : 4 = 45°, в силу чего наклонные прямые являются биссектрисами верхних углов, а каждый из них равен:
45 + 45 = 90°.
В прямоугольнике противоположные стороны равны.
Следовательно, нижнее основание четырёхугольника равно 11.
2) Биссектрисы прямых углов делят их на 2 равных угла, каждый по 45°; следовательно, треугольники, прилегающие к боковым сторонам, является равнобедренными, и их нижние стороны равны 6.
3) Общая длина оснований этих треугольников составляет:
6 + 6 = 12
4) Полагая, что точки х и у, принадлежат нижней стороне прямоугольника, найдём расстояние между ними:
12 - 11 = 1
ответ: 1