1) Скопиювати малюнок не виходить, спробую так пояснити.АВСD трапеція,СК-висота,кут АСD=90 град.,кут АСК=60 град Відповідно кут КСD =90-60=30 град .В трикутн. КСD:кут К=90, кутС=30, кут D=60град. Отже один кут трапеції 60 град, так як вона рівнобічна, тоі ще один 60 град.Верхній кут в сумі складає з нижнім 180 град, отже верхні кути по 120 град.
2) Нехай х -коєфіцієнт пропорційності, тоді один катет 3х,то гіпотенуза 5х. За теоремою Піфагора ( 3х)в квадр.+16 в квадр.=( 5х)в квадр.
9х 2+ 256=25 х 2
16х 2=256
х 2 =16
х=4
Маємо один катет 12см,гіпотенуза 20 см,другий 16 см.Периметр: 12+20+ 16=48 см.
1) Скопиювати малюнок не виходить, спробую так пояснити.АВСD трапеція,СК-висота,кут АСD=90 град.,кут АСК=60 град Відповідно кут КСD =90-60=30 град .В трикутн. КСD:кут К=90, кутС=30, кут D=60град. Отже один кут трапеції 60 град, так як вона рівнобічна, тоі ще один 60 град.Верхній кут в сумі складає з нижнім 180 град, отже верхні кути по 120 град.
2) Нехай х -коєфіцієнт пропорційності, тоді один катет 3х,то гіпотенуза 5х. За теоремою Піфагора ( 3х)в квадр.+16 в квадр.=( 5х)в квадр.
9х 2+ 256=25 х 2
16х 2=256
х 2 =16
х=4
Маємо один катет 12см,гіпотенуза 20 см,другий 16 см.Периметр: 12+20+ 16=48 см.
1))). Если луч есть биссектриса угла, то любая точка его равноудалена от сторон этого угла.
2))). Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
3))). 1. Точка пересечения биссектрис треугольника- центр вписанной окружности ;
2. Точка пересечения серединных перпендикуляров треугольника- центр описанной окружности ;
3. Точка пересечения медиан треугольника (медианы треугольника пересекаются в отношении 2:1)
4. Точка пересечения высот треугольника - ортоцентр фигуры (центр вписанной и описанной окружности).
Объяснение: