Ресурсная функция литосферы определяет роль ресурсов, содержащихся в литосфере, а также факторов характера для жизни биоты и человека. Известно, что литосфера содержит различные материальные ресурсы, большинство из которых активно используются человеком. Именно в этой связи наблюдается значительная ресурсная напряженность, которая не убывает, а нарастает год от года.
Весьма тревожная ситуация сложилась с энергетическими ресурсами. Согласно популярным оценкам, газ и нефть перспективны не более чем на 50 лет, уголь приблизительно на 150 лет. До настоящего времени нет четких представлений о тех энергетических ресурсах, которые человечество намерено использовать, допустим, через 50 лет. Атомная энергетика опасна, трудноразрешимой представляется проблема реактивации отходов ядерной промышленности: во всей литосфере пока не обнаружено такого укромного местечка, где можно было бы спрятать радиоактивные вещества в безопасном для биоты состоянии. Не разработаны пути использования в удовлетворяющем человечество количестве солнечной и ветряной энергии (для размещения солнечных батарей и ветряных электростанций требуется много места, а коэффициент полезного действия их все ещё недостаточно высок).
Вот пришло в голову решение :) Так-то задачка ерундовая :) Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) ) Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC; то есть ∠BAC = ∠BA1C; Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому ∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK; следовательно ∠BAC = ∠BMK; и треугольники ABC и BMK имеют равные углы. То есть, подобны.
Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.
Дополнение. Тривиальный решения тут такой. ∠KHB = ∠A; ∠MHB = ∠C; BK = BH*sin(A) = BC*sin(C)*sin(A); BM = BH*sin(C) = BA*sin(A)*sin(C); То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны. коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.
Ресурсная функция литосферы определяет роль ресурсов, содержащихся в литосфере, а также факторов характера для жизни биоты и человека. Известно, что литосфера содержит различные материальные ресурсы, большинство из которых активно используются человеком. Именно в этой связи наблюдается значительная ресурсная напряженность, которая не убывает, а нарастает год от года.
Весьма тревожная ситуация сложилась с энергетическими ресурсами. Согласно популярным оценкам, газ и нефть перспективны не более чем на 50 лет, уголь приблизительно на 150 лет. До настоящего времени нет четких представлений о тех энергетических ресурсах, которые человечество намерено использовать, допустим, через 50 лет. Атомная энергетика опасна, трудноразрешимой представляется проблема реактивации отходов ядерной промышленности: во всей литосфере пока не обнаружено такого укромного местечка, где можно было бы спрятать радиоактивные вещества в безопасном для биоты состоянии. Не разработаны пути использования в удовлетворяющем человечество количестве солнечной и ветряной энергии (для размещения солнечных батарей и ветряных электростанций требуется много места, а коэффициент полезного действия их все ещё недостаточно высок).
Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) )
Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC;
то есть ∠BAC = ∠BA1C;
Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому
∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK;
следовательно ∠BAC = ∠BMK;
и треугольники ABC и BMK имеют равные углы. То есть, подобны.
Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.
Дополнение. Тривиальный решения тут такой.
∠KHB = ∠A; ∠MHB = ∠C;
BK = BH*sin(A) = BC*sin(C)*sin(A);
BM = BH*sin(C) = BA*sin(A)*sin(C);
То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны.
коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.