1.Где то рисуем на плоскости ту сторону, К которой проведена высота. Используя один из его концов, как центр, рисуем окружность, радиус которой равен другой стороне. Не жадничайте, нарисуйте всю окружность.
2.Теперь вдоль стороны, К которой проведена высота, от ТОЙ ЖЕ вершины, то есть от центра окружности откладываем высоту и в полученной точке проводим препендикуляр до пересечения с окружностью.
3.Вот теперь БЕРЕМ ЭТОТ перпендикуляр (между стороной и окружностью) и ОПЯТЬ откладываем от ТОЙ ЖЕ точки вдоль той же стороны. Проводим через полученную точку перпендикуляр до пересечения с окружностью, получаем ТРЕТЬЮ ВЕРШИНУ треугольника.
Всё, что вам надо понять - почему этот последний перпендикуляр равен высоте. Но вообще то это по построению элементарно видно - сумма квадартов высоты и вс отрезка (полученного в пунте 2.) равна квадрату радиуса, то есть мы 2 раза построили одинаковые прямоугольные треугольники. Всё.
Вся идея построения базируется на простом соотношении между длинной хорды и расстоянием от неё до центра окружности.
Рассказываю. Можете брать в руки инструменты :)))
1.Где то рисуем на плоскости ту сторону, К которой проведена высота. Используя один из его концов, как центр, рисуем окружность, радиус которой равен другой стороне. Не жадничайте, нарисуйте всю окружность.
2.Теперь вдоль стороны, К которой проведена высота, от ТОЙ ЖЕ вершины, то есть от центра окружности откладываем высоту и в полученной точке проводим препендикуляр до пересечения с окружностью.
3.Вот теперь БЕРЕМ ЭТОТ перпендикуляр (между стороной и окружностью) и ОПЯТЬ откладываем от ТОЙ ЖЕ точки вдоль той же стороны. Проводим через полученную точку перпендикуляр до пересечения с окружностью, получаем ТРЕТЬЮ ВЕРШИНУ треугольника.
Всё, что вам надо понять - почему этот последний перпендикуляр равен высоте. Но вообще то это по построению элементарно видно - сумма квадартов высоты и вс отрезка (полученного в пунте 2.) равна квадрату радиуса, то есть мы 2 раза построили одинаковые прямоугольные треугольники. Всё.
Вся идея построения базируется на простом соотношении между длинной хорды и расстоянием от неё до центра окружности.
Что за s???????? Ищем периметр BPQ.
На чертеже отмечены все точки касания. По свойству касательных PN = PM, NQ = QK;
Поэтому периметр BPQ равен сумме 2 одинаковых отрезков BM и BK.
Обозначим BM = BK = x; AM = AT = y; TC = KC = z;
Тогда периметр P = 2*(x + y + z);
Легко видеть, что если известна сторона AB = x + y, то мы можем вычислить z, но решить задачу не сможем - для решения нам надо вычислить x.
Если же задана AC (как мне в переписке сообщил автор), то AC = y + z, и
Pbpq = 2*x = P - 2*AC = 103 - 2*33 = 37.