Пусть есть пирамида SABCD. Так как пирамида правильная, в основании лежит квадрат ABCD со стороной 14 см. Основание высоты пирамиды совпадает с центром квадрата. Боковые грани равнобедренные треугольники. Высота боковой грани – апофема. Полная поверхность S = Sбок + Sосн , Sбок = Pl/2 , где Р периметр основания, Sосн = a^2, Sосн = 14·14 = 196 (смˆ2), Р = 4·а = 4·14 = 56 (см). Найдем апофему Рассмотрим треугольник , который образует апофема, высота пирамиды и отрезок, соединяющий основание апофемы и центр квадрата и равен половине стороны квадрата 7 см. Треугольник прямоугольный, отрезок - катет, апофема – гипотенуза , угол 45°, апофема = катет/cos 45° = 7/cos 45° = 7/√2/2 = 7√2 ; Sбок = 56·7√2/2 = 196√2, S = 196√2 + 196 = 196(1 +√2) Смˆ2
Проведем окружность радиусом R=a с центром в точке М. Пересечение этой окружности с прямой I и даст нам точки на прямой I, находящиеся на расстоянии "а" от точки М. Проведем перпендикуляр МН из точки М к прямой I. Длина этого перпендикуляра - расстояние от точки М до прямой I. Если значение "а" больше расстояния от М до I, то имеем две точки на прямой I, находящиеся на расстоянии "а" от точки М. Если значение "а" равно расстоянию от М до I, то имеем одну точку на прямой I, находящуюся на расстоянии "а" от точки М. Если значение "а" меньше расстояния от М до I, то точки на прямой I, находящейся на расстоянии "а" от точки М не существует.
Пересечение этой окружности с прямой I и даст нам точки на прямой I, находящиеся на расстоянии "а" от точки М.
Проведем перпендикуляр МН из точки М к прямой I. Длина этого перпендикуляра - расстояние от точки М до прямой I.
Если значение "а" больше расстояния от М до I, то имеем две точки на прямой I, находящиеся на расстоянии "а" от точки М.
Если значение "а" равно расстоянию от М до I, то имеем одну точку на прямой I, находящуюся на расстоянии "а" от точки М.
Если значение "а" меньше расстояния от М до I, то точки на прямой I, находящейся на расстоянии "а" от точки М не существует.