Реши уравнение: 5+4⋅(3⋅x+6)=7−6⋅x.
(При необходимости, ответ округли до тысячных).
Найди значение выражения: 12+19,77.
Найди значение выражения (24⋅b+17⋅a2)a−17⋅a, если a=56, b=7.
Плитка шоколада стоит 72 руб., упаковка печенья стоит 119 руб. На шоколад в магазине действует скидка 9%. Какую сумму заплатит покупатель за 4 плитки (плиток) шоколада и 4 пачки (пачек) печенья? (ответ округли до сотых).
АВ - произвольный отрезок.
1. Проведем луч с началом в точке А под произвольным углом к отрезку.
2. На луче от точки А с циркуля отложим 7 одинаковых отрезков произвольной длины:
АК₁ = К₁К₂ = К₂К₃ = К₃К₄ = К₄К₅ = К₅К₆ = К₆К₇
3. Проведем прямую К₇В через конец последнего отрезка и точку В.
4. Через точки К₁, К₂, К₃, К₄, К₅ и К₆ проведем прямые, параллельные прямой К₇В.
Точки пересечения этих прямых с отрезком АВ разделят отрезок АВ на 7 равных частей (по теореме Фалеса)
АМ₁ = М₁М₂ = М₂М₃ = М₃М₄ = М₄М₅ = М₅М₆ = М₆В
Объяснение:
125. <AOC=<BOD как вертикальные, △AOC=△BOD по 1му признаку, значит <ACO=<BDO а они накрест лежащие, значит AC ll BD
126. <1+<2=180 по условию, <2+смежный с ним угол тоже =180, значит этот смежный угол =<1, но они соответственные, значит a ll b
129. а) углы по 80 накрест лежащие, значит прямые параллельны, рассматриваем другую секущую, там <x = 40 как соответственные.
Также делаем б) в) доказываем параллельность прямых и рассматриваем другую секущую, где находится искомый угол
Итак, 130.
Здесь мы продолжим прямую СЕ до пересечения с АВ в точке F. Так как AB ll CD, то <DCE=<AFE=70 как накрест лежащие. <AEC - внешний угол в AEF.
Внешний угол треугольника равен сумме двух оставшихся углов треугольника. Значит <AEC=<AFE+<FAE(BAE)=70+40=110°