Дана правильная четырехугольная пирамида SAВCD, сторона основания "а" и высота "Н" равны 2 см.
Эту задачу можно решит двумя геометрическим и 2) векторным.
1) Угол между плоскостью SAB и прямой АС - это угол между АС и её проекцией на плоскость SAB.
Апофема боковой грани А = √((a/2)² + H²) = √(1² + 2²) = √5.
Косинус угла наклона боковой грани к основанию равен: cos β = 1/√5.
Спроецируем точку С на плоскость SAB - пусть это точка Р.
ВР = a*cos β = 2*( 1/√5)= 2/√5.
Проекция АР = √(a² + BP²) = √(2² + ( 2/√5)²) = √(4 + (4/5)) = √(24/5).
Диагональ АС = 2√2 (по свойству гипотенузы в равнобедренном прямоугольном треугольнике).
Отрезок СР = a*sinβ.
Находим sinβ = √(1 - cos²β) = √(1 - (1/√5)²) = √(1 - (1/5)) = 2/√5.
СР = 2*(2/√5) = 4/√5.
Получили стороны треугольника, где угол САР и есть угол между АС и плоскостью SAB.
Решается по теореме косинусов.
cos CAP = ((√2)² + (√(24/5))² - (4/√5)²)/(2*√2*√(24/5)) = 0,774597.
Угол САР = 0,684719 радиан или 39,23152 градуса.
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.
Дана правильная четырехугольная пирамида SAВCD, сторона основания "а" и высота "Н" равны 2 см.
Эту задачу можно решит двумя геометрическим и 2) векторным.
1) Угол между плоскостью SAB и прямой АС - это угол между АС и её проекцией на плоскость SAB.
Апофема боковой грани А = √((a/2)² + H²) = √(1² + 2²) = √5.
Косинус угла наклона боковой грани к основанию равен: cos β = 1/√5.
Спроецируем точку С на плоскость SAB - пусть это точка Р.
ВР = a*cos β = 2*( 1/√5)= 2/√5.
Проекция АР = √(a² + BP²) = √(2² + ( 2/√5)²) = √(4 + (4/5)) = √(24/5).
Диагональ АС = 2√2 (по свойству гипотенузы в равнобедренном прямоугольном треугольнике).
Отрезок СР = a*sinβ.
Находим sinβ = √(1 - cos²β) = √(1 - (1/√5)²) = √(1 - (1/5)) = 2/√5.
СР = 2*(2/√5) = 4/√5.
Получили стороны треугольника, где угол САР и есть угол между АС и плоскостью SAB.
Решается по теореме косинусов.
cos CAP = ((√2)² + (√(24/5))² - (4/√5)²)/(2*√2*√(24/5)) = 0,774597.
Угол САР = 0,684719 радиан или 39,23152 градуса.
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.