Реши задачу В ромбе ABCD угол ADC = 104 ° и диагонали пересекаются в точке О.Найди углы треугольника АОВ. В ответе запиши значения градусной меры углов в порядке возрастания без пробелов, знаков препинания и других символов. ответ:
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответствующие элементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
Для равенства двух треугольников достаточно, чтобы три элемента одного треугольника были равны соответствующим элементам другого треугольника, при этом непременно в число этих элементов должна входить хотя бы одна сторона.
Так как все прямые углы равны между собой, то прямоугольные треугольники уже имеют по одному равному элементу, именно по одному прямому углу.
Объяснение:
Отсюда следует, что прямоугольные треугольники равны:
если катеты одного треугольника соответственно равны катетам другого треугольника.
если катет и прилежащий острый угол одного угольника соответственно равны катету и прилежащему острому углу другого треугольника.
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответствующие элементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Для равенства двух треугольников достаточно, чтобы три элемента одного треугольника были равны соответствующим элементам другого треугольника, при этом непременно в число этих элементов должна входить хотя бы одна сторона.
Так как все прямые углы равны между собой, то прямоугольные треугольники уже имеют по одному равному элементу, именно по одному прямому углу.
Объяснение:
Отсюда следует, что прямоугольные треугольники равны:
если катеты одного треугольника соответственно равны катетам другого треугольника.
если катет и прилежащий острый угол одного угольника соответственно равны катету и прилежащему острому углу другого треугольника.