Реши задачу. В треугольнике ABC, из вершины угла A проведен луч, который пересекает сторону BC в точке E. Найдите длину отрезка BE, если угол BAE = угол C. AB = 10 см, BC = 20 см
В треугольнике может быть только один тупой угол - угол против основания. Высота, проведенная к основанию, является и биссектрисой и медианой. Тогда боковая сторона равна 4√3/3, так как угол при основании равен 30°. Высота, проведенная к боковой стороне, равна Н=√((4√3/3)²-(2√3/3)²)=6/3=2 см. Можно и так: Угол при основании равен 30°, тогда высота, проведенная к боковой стороне - это катет, лежащий против угла 30° и равен половине гипотенузы (основания данного треугольника = 4см). ответ: высота равна 2см.
В треугольнике может быть только один тупой угол - угол против основания. Высота, проведенная к основанию, является и биссектрисой и медианой. Тогда боковая сторона равна 4√3/3, так как угол при основании равен 30°. Высота, проведенная к боковой стороне, равна Н=√((4√3/3)²-(2√3/3)²)=6/3=2 см. Можно и так: Угол при основании равен 30°, тогда высота, проведенная к боковой стороне - это катет, лежащий против угла 30° и равен половине гипотенузы (основания данного треугольника = 4см). ответ: высота равна 2см.
Тогда боковая сторона равна 4√3/3, так как угол при основании
равен 30°.
Высота, проведенная к боковой стороне, равна
Н=√((4√3/3)²-(2√3/3)²)=6/3=2 см.
Можно и так:
Угол при основании равен 30°, тогда высота, проведенная к боковой стороне - это катет, лежащий против угла 30° и равен половине гипотенузы (основания данного треугольника = 4см).
ответ: высота равна 2см.
Тогда боковая сторона равна 4√3/3, так как угол при основании
равен 30°.
Высота, проведенная к боковой стороне, равна
Н=√((4√3/3)²-(2√3/3)²)=6/3=2 см.
Можно и так:
Угол при основании равен 30°, тогда высота, проведенная к боковой стороне - это катет, лежащий против угла 30° и равен половине гипотенузы (основания данного треугольника = 4см).
ответ: высота равна 2см.