Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
AOD - прямоугольный треугольник.
ОР - высота из прямого угла в треугольнике AOD.
ОР=√(АР*РD)=√(6√3*2√3)=6см.
По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см.
R=AJ=JO=JP = АО/2 = 6см.
Площадь круга Sк=π*R²=36π.
В прямоугольном треугольнике АРО катет ОР равен половине
гипотенузы АО, значит <PAO=30°,
<РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°.
<PJK=120°(центральный угол, опирающийся на дугу РОК).
РН=0,5*АР=3√3см (катет против угла 30°).
AH=√(АР²-РH²)=√(108-27)=9см.
Площадь треугольника АКР равна
Sapk=AH*PH=9*3√3=27√3см².
Площадь сегмента КОР равна
Skop=(R²/2)*(π*α/180 -Sinα) - формула.
В нашем случае α=<PKJ =120°.
Skop=(36/2)*(π*120/180 -√3/2)
Skop=(12π-9√3)см².
Искомая площадь равна
S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
41) ∠4 = 145°
43) ∠1 = 40
49) ∠AKD = 10°
Объяснение:
41) Поскольку ∠3 + ∠1 = 180 и ∠3 - ∠1 = 110 составим систему уравнений (пусть ∠3 = х, ∠1 = y ):
Решим вторую часть системы.
x - (180 - x) = 110
2x = 110 +180
2x = 290
x = 145
∠3 = 145°, следовательно ∠4 тоже будет равен 145°, так как это вертикальные углы.
43) ∠3 = 180° - ∠ACD(∠1+∠2) = 180 - 110 = 70° (так как смежные)
Поскольку CD - биссектриса ∠ECB, следовательно ∠3 = ∠2 = 70°
∠1 = 180 - ∠ECB (∠2+∠3) = 180 - 140 = 40° (опять-таки так как эти углы смежные)
49) Так как KE - биссектриса ∠CKB, тогда ∠EKB = ∠CKE = 40°
Так как DK ⊥CK, значит ∠ DKC = 90°
∠DKB = ∠EKB + ∠CKE + ∠DKC = 40 + 40 + 90 = 170°
∠AKD = 180° - ∠DKB = 180- 170 = 10° (так как ∠AKD и ∠DKB смежные)