треугольник АВС, О-пересечение медиан, в точке пересечения медианы делятся в отношении 2/1 начиная от вершины, ВМ-медиана на АС, ВО/ОМ=2/1=2х/1х, ВО=2х, ОМ=х, ВМ=ВО+ОМ=2х+х=3х, КЕ параллельна АС, треугольник КВЕ подобен треугольнику АВС по двум равным углам (уголВ-общий, уголВКЕ=уголА как соответственные), КЕ=12, в подобных треугольниках линейные размеры пропорцианальны, ВО/ВМ=КЕ/АС, 2х/3х=12/АС, АС=12*3/2=18
площади в подобных треугольниках относятся как квадраты линейных размеров, площадьКВЕ/площадьАВС=КЕ в квадрате/АС в квадрате, площадьКВЕ/72=144/324, площадь КВЕ=72*144/324=32
КО- перпендикуляр к плоскости=корень3, КВ и КА наклонные, ОВ-проекция наклонной КВ на плоскость, ОА-проекция наклонной КА на плоскость, уголКВО=60, уголКАО=45, треугольник КОВ прямоугольный, КВ=КО/sin60=корень3/(корень3/2)=2, треугольник КАО прямоугольный, равнобедренный, уголАКО=90-уголКАО=90-45=45, КО=ОА=корень3, АК=корень(2*КО в квадрате)=корень(2*3)=корень6, треугольник АКВ, уголАКВ=90, КА перпендикулярна КВ, треугольник АКВ прямоугольный, АВ=корень(КА в квадрате+КВ в квадрате)=корень(6+4)=корень10- расстояние между основаниями
треугольник АВС, О-пересечение медиан, в точке пересечения медианы делятся в отношении 2/1 начиная от вершины, ВМ-медиана на АС, ВО/ОМ=2/1=2х/1х, ВО=2х, ОМ=х, ВМ=ВО+ОМ=2х+х=3х, КЕ параллельна АС, треугольник КВЕ подобен треугольнику АВС по двум равным углам (уголВ-общий, уголВКЕ=уголА как соответственные), КЕ=12, в подобных треугольниках линейные размеры пропорцианальны, ВО/ВМ=КЕ/АС, 2х/3х=12/АС, АС=12*3/2=18
площади в подобных треугольниках относятся как квадраты линейных размеров, площадьКВЕ/площадьАВС=КЕ в квадрате/АС в квадрате, площадьКВЕ/72=144/324, площадь КВЕ=72*144/324=32