Решить . 1) из точки данной окружности проведены диаметр и хорда, равная радиусу. найдите угол между ними. 2) из точки данной окружности проведены две хорды, равные радиусу. найдите угол между ними.
Пусть О - центр окружности, диаметр окружности АВ, а хорда, равная радиусу АС.
1)Найти уг. САВ
Соединим центр окружности О и точку С радиусом ОС. Получили тр-к АОС, в котором каждая сторона равна радиусу, т.е. тр-к АОС правильный, и в нём все внутренние углы равны по 60°. А уг.САВ = уг.САО. Таким образом, уг. САВ = 60°
2)добавим к предыдущему рисунку хорду АД, равную радиусу, и проведём радиус ОД.
Найти: уг. САД.
По аналогии с предыдущим пунктом уг. ДАО = 60°.
Тогда уг.САД = уг.САО + уг. ДАО = 60° + 60° = 120°.
имеем правильный треугольник, со стороной радиуса. угол П/3
имеем равнобедренный треугольник со стороной R
из теоремы синусов. sinA=1/2 a=П/6
икомый угол = П-2*П/6=П-П/3=2П/3
Пусть О - центр окружности, диаметр окружности АВ, а хорда, равная радиусу АС.
1)Найти уг. САВ
Соединим центр окружности О и точку С радиусом ОС. Получили тр-к АОС, в котором каждая сторона равна радиусу, т.е. тр-к АОС правильный, и в нём все внутренние углы равны по 60°. А уг.САВ = уг.САО. Таким образом, уг. САВ = 60°
2)добавим к предыдущему рисунку хорду АД, равную радиусу, и проведём радиус ОД.
Найти: уг. САД.
По аналогии с предыдущим пунктом уг. ДАО = 60°.
Тогда уг.САД = уг.САО + уг. ДАО = 60° + 60° = 120°.