В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
beknurr546ozpknp
beknurr546ozpknp
06.08.2022 17:02 •  Геометрия

Решить 1. основание пирамиды - правильный треугольник с площадью 9 см^2. две боковые грани пирамиды перпендикулярны к плоскости основания, а третья наклонена к ней под углом в 30*.найдите : 1) длины боковых сторон пирамиды; 2) площадь боковой поверхности пирамиды. 2. ребро правильного тетраэдра dabc равно а. постройте сечение тетраэдра плоскостью, проходящей через середину ребра da и параллельно (dbc). найдите площадь сечения.

Показать ответ
Ответ:
9999Ksenya999
9999Ksenya999
26.12.2023 12:50
Хорошо, давайте решим каждую задачу поочередно:

1) Для решения первой задачи найдем длины боковых сторон пирамиды.

Поскольку основание пирамиды представляет собой правильный треугольник, у которого площадь равна 9 см^2, мы можем использовать формулу для площади правильного треугольника:

A = (a^2 * √3) / 4,

где A - площадь треугольника, a - длина стороны треугольника.

Подставляя известные данные, получим:

9 = (a^2 * √3) / 4.

Умножим обе части уравнения на 4/√3, чтобы избавиться от знаменателя:

4/√3 * 9 = a^2.

Подсчитаем эту часть:

4/√3 * 9 = (4 * 9) / √3 = 36 / √3.

Умножим числитель и знаменатель на √3, чтобы убрать корень в знаменателе:

36√3 / √3 * √3 = 36√3 / 3 = 12√3.

Итак, длины боковых сторон пирамиды равны 12√3 см.

2) Теперь найдем площадь боковой поверхности пирамиды.

Боковая поверхность пирамиды представляет собой равнобедренный треугольник, образованный одной из боковых сторон и половиной основания пирамиды.

Длина боковой стороны пирамиды, которая наклонена к плоскости основания под углом 30°, равняется длине стороны основания, умноженной на sin 30°.

Так как длина стороны основания равна 12√3 см, то длина боковой стороны пирамиды равна:

12√3 * sin 30°.

Вычислим значение sin 30°: sin 30° = 1/2.

Тогда длина боковой стороны пирамиды равна:

12√3 * 1/2 = 6√3 см.

Так как боковая поверхность пирамиды состоит из 4 равнобедренных треугольников, площадь каждого из них можно найти по формуле:

S = (a * h) / 2,

где S - площадь треугольника, a - длина основания, h - высота треугольника.

В данном случае, длина основания равна 6√3 см, а высота треугольника равна длине стороны основания пирамиды.

Подставив известные значения в формулу, получим:

S = (6√3 * 12√3) / 2 = (72 * 3) / 2 = 216 / 2 = 108.

Итак, площадь боковой поверхности пирамиды равна 108 см^2.

2) Теперь решим вторую задачу, касающуюся тетраэдра и его сечения.

Проведем плоскость через середину ребра da и параллельно плоскости (dbc). Это позволит нам создать плоское сечение тетраэдра.

Сечение, проходящее через середину ребра da, разделит его на две равные части (ребра db и dc). Таким образом, основание сечения будет являться равносторонним треугольником со стороной а/2.

Теперь нам нужно найти площадь сечения. Поскольку оно является равносторонним треугольником, мы можем использовать формулу для площади равностороннего треугольника:

A = (a^2 * √3) / 4,

где A - площадь треугольника, a - длина стороны треугольника.

Подставляя известные значения, получим:

A = ((a/2)^2 * √3) / 4 = (a^2 * √3) / 16.

Таким образом, площадь сечения тетраэдра равна (a^2 * √3) / 16.

Надеюсь, это решение понятно для вас. Если у вас возникнут еще вопросы, пожалуйста, пишите.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота