решить:
1. Во сколько раз увеличится объем правильного тетраэдра, если все его ребра увеличить в 8 раз?
2. В кубе ABCDA1B1C1D1 точки E, F, E1, F1 являются серединами ребер BC, DC, B1C1 и D1C1 соответственно. Объем треугольной призмы отсекаемой от куба плоскостью EFF1E1, равен 9. Найдите объем куба.
3. Прямоугольный параллелепипед описан около сферы с радиусом 5. Найдите его объем.
Две стороны треугольника равны 3 и 5. Известно, что окружность, проходящая через середины этих сторон и их общую вершину, касается третьей стороны треугольника. Найдите третью сторону.
––––––––––––––––
АН и СН - касательные к окружности.
АВ - секущая, АК - её внешняя часть.
АВ=3, АК=0,5 АВ=1,5
СВ - секущая, СМ - её внешняя часть
СВ=5, СМ=СВ:2=2,5
Квадрат касательной равен произведению секущей на её внешнюю часть. ⇒
АН ²=АВ•AK=3*1,5=4,5=450/100
АН=√4,5=√(450/100)=√(9*25*2:100)=(3•5√2)/10=1,5√2
СН²=СВ•CM=5*2,5=1250/100
CH=√(25•25•2/100)=(25√2)/10=2,5√2
АС=АН+СН=1,5√2+2,5√2=4√2
2. Зная половину стороны равностороннего тр-ка легко подсчитать его периметр. Р=8·2·3=48 см.
3. Задачу можно решить логически.
В тр-ках АВС и АLС ∠С общий, угол при вершине А в них отличается в два раза, а разница в углах при третьей вершине (В и L) всего в 2°,значит биссектриса делит вершину А на два угла по 2°.
Если ∠ВАС=4° и ∠LАС=2°, то ∠АСВ=180-4-114=180-2-116=62° - это ответ.
Ошибка в условии очевидна. Поменяли местами размеры углов АВС и АЛС.