Заметьте, из знания ответа можно было бы догадаться, поскольку 7^2 + 14^2 = (7√5)^2; Это сразу очевидно на самом деле, потому что все три треугольника ABC, AKC, BKC подобны, и в треугольниках AKC и BKC роль гипотенуз выполняют катеты треугольника ABC. (То есть a^2 + b^2 = c^2; где a, b, c - ГИПОТЕНУЗЫ треугольников BKC; AKC; ABC) В общем случае в прямоугольном треугольнике r = (a + b - c)/2 = с*(a/c + b/c - 1)/2; в этих трех треугольниках a/c и b/c - одинаковые (обращаю внимание, что a, b, c, означают тут НЕ ТО, то в первом пункте, а просто катеты и гипотенузу любого треугольника) То есть r = k*c; c одним и тем же числом k; (на самом деле это верно для любых подобных треугольников, но в данном случае доказательство не требует никаких усилий). Если собирать оба утверждения вместе, получится r^2 = r1^2 + r2^2;
Я пишу решение "вслепую", так что проверяйте потом. Пусть O1 - центр окружности радиуса 4 (на ней пусть лежит точка A); O2 - центр второй окружности. Тут кругом прямые углы. Логичнее начать с пункта в) Отрезки O1A и O2B оба перпендикулярны AB => O1A II O2B; => ∠AO1P + ∠BO2P = 180°; Это центральные углы дуг AP и BP; => ∠PAB + ∠PBA = 90°; => ∠APB = 90°; б) O1K - биссектриса ∠AKP; O2K = биссектриса ∠BKP; Половины этих углов в сумме составляют ∠O1KO2; то есть ∠O1KO2 = 90°; PK - высота к гипотенузе в прямоугольном треугольнике O1KO2; и она делит гипотенузу на отрезки 4 и 11; поэтому PK^2 = 4*11 = 44; PK = 2√11 а) AB найти проще всего. Из O1 надо провести прямую перпендикулярно O2B (и параллельно AB); получается прямоугольный треугольник с гипотенузой 4 + 11 =15; и катетом 11 - 4 = 7; откуда AB^2 = 15^2 - 7^2 = 11*16; AB = 4√11;
PK = AB/2; что совсем не удивительно (я тут нарочно схитрил, чтобы подольше понабирать решение.) Дело в том, что PK - медиана в прямоугольном треугольнике APB, то есть PK = AB/2; сразу без всяких вычислений. Но зато ответ получен двумя разными Можно выбирать, что считать и каким или AB...
7^2 + 14^2 = (7√5)^2;
Это сразу очевидно на самом деле, потому что все три треугольника ABC, AKC, BKC подобны, и в треугольниках AKC и BKC роль гипотенуз выполняют катеты треугольника ABC.
(То есть a^2 + b^2 = c^2; где a, b, c - ГИПОТЕНУЗЫ треугольников BKC; AKC; ABC)
В общем случае в прямоугольном треугольнике
r = (a + b - c)/2 = с*(a/c + b/c - 1)/2; в этих трех треугольниках a/c и b/c - одинаковые (обращаю внимание, что a, b, c, означают тут НЕ ТО, то в первом пункте, а просто катеты и гипотенузу любого треугольника)
То есть r = k*c; c одним и тем же числом k; (на самом деле это верно для любых подобных треугольников, но в данном случае доказательство не требует никаких усилий).
Если собирать оба утверждения вместе, получится
r^2 = r1^2 + r2^2;
Пусть O1 - центр окружности радиуса 4 (на ней пусть лежит точка A); O2 - центр второй окружности.
Тут кругом прямые углы. Логичнее начать с пункта в)
Отрезки O1A и O2B оба перпендикулярны AB => O1A II O2B;
=> ∠AO1P + ∠BO2P = 180°; Это центральные углы дуг AP и BP;
=> ∠PAB + ∠PBA = 90°; => ∠APB = 90°;
б) O1K - биссектриса ∠AKP; O2K = биссектриса ∠BKP;
Половины этих углов в сумме составляют ∠O1KO2; то есть
∠O1KO2 = 90°;
PK - высота к гипотенузе в прямоугольном треугольнике O1KO2;
и она делит гипотенузу на отрезки 4 и 11; поэтому PK^2 = 4*11 = 44;
PK = 2√11
а) AB найти проще всего. Из O1 надо провести прямую перпендикулярно O2B (и параллельно AB); получается прямоугольный треугольник с гипотенузой 4 + 11 =15; и катетом 11 - 4 = 7; откуда AB^2 = 15^2 - 7^2 = 11*16;
AB = 4√11;
PK = AB/2; что совсем не удивительно (я тут нарочно схитрил, чтобы подольше понабирать решение.)
Дело в том, что PK - медиана в прямоугольном треугольнике APB, то есть PK = AB/2; сразу без всяких вычислений.
Но зато ответ получен двумя разными Можно выбирать, что считать и каким или AB...