В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
професор3814
професор3814
16.06.2020 01:55 •  Геометрия

Решить 2 с пояснениями 2. в равнобедренном треугольнике авс с основанием ас проведена медиана bd. докажите, что прямая bd касается окружности с центром с и радиусом, равным ad. найдите отрезок касательных ав и ас, проведённых из точки а к окружности радиуса r, если r = 9 см, ð вас=120°.

Показать ответ
Ответ:
beresnevav55p0as1j
beresnevav55p0as1j
12.06.2020 23:00

2)во первых, касательные равны, Соедини А с центром окр. и проведи радиусы в точки касания 
В треуг. ОСА катет = радиусу и угол САО = 60. АВ найди из определения ctg60

 

 

1)

Медиана в равнобедренном треугольнике, опущенная на основание, является и высотой, т. е. BD перпендикулярна DC. Так как BD медиана, то AD=DC. Точка касания окружности и прямой BD - это точка D, а CD - радиус окружности. Т. е. радиус перпендикулярен касательной BD, что и требовалось

0,0(0 оценок)
Ответ:
Shaurma021
Shaurma021
12.06.2020 23:00

Медиана в равнобедренном треугольнике является высотой. BD перпендикулярна AC.

AD=DC. CD перпендикулярна BD следовательно BD касательная.

 

 

 

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота