Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.
треугольник нок равнобедренный он=ок=радиусу=1, проводим высоту ор на нк, угол онк=углуокн=(180-120)/2=30, треугольник окр прямоугольный, ор=1/2 ок - лежит напротив угла 30, ор = 1/2=0,5, нр=рк= корень (ок в квадрате - ор в квадрате) =
=корень( 1-0,25) = 0,5 х корень3, нк =нр+рк= 2 х 0,5 х корень3 =корень3
треугольник анк равнобедренный ан=ак как касательные к окружности. проведенные из одной точки, угол анк=углуакн = (180-60)/2=60, треугольник анк равносторонний углы=60, значит ак=ан=нк=корень3
ответ:
треугольник авс, о -центр, он радиус перпендикулярный ав в точке касания, ок радиус перпендикулярный ас в точке касания,
четырехугольник анок, угол ано+углуако=90, угола=60, угол нок = 360-90-90-60=120
треугольник нок равнобедренный он=ок=радиусу=1, проводим высоту ор на нк, угол онк=углуокн=(180-120)/2=30, треугольник окр прямоугольный, ор=1/2 ок - лежит напротив угла 30, ор = 1/2=0,5, нр=рк= корень (ок в квадрате - ор в квадрате) =
=корень( 1-0,25) = 0,5 х корень3, нк =нр+рк= 2 х 0,5 х корень3 =корень3
треугольник анк равнобедренный ан=ак как касательные к окружности. проведенные из одной точки, угол анк=углуакн = (180-60)/2=60, треугольник анк равносторонний углы=60, значит ак=ан=нк=корень3
расстояние=корень3
наверно такое было надо решить?
объяснение: