1. Ну так как Р - середина, то ЕР=РF и МР=РN. Т. к. углы MPF и EPN вертикальны, они равны. А если EP=PF, MP=PN, и угол MPF равен углу EPN, то по 1-ому признаку равенства треугольников треугольник ENP и треугольник MPF равны, значит все их стороны и углы равны, тоесть и угол PMF равен углу PNE, а если так, то при секущей MN эти накрест-лежащие углы равны, значит по первому признаку EN II MF. 2. Только слушай УГОЛ BAC НЕ МОЖЕТ БЫТЬ 720 ГРАДУСОВ, Я ПОСТАВЛЮ В НЕГО НАВЕРНОЕ 120 ГРАДУСОВ. Т. к. AD - биссектриса следовательно угол BAD равен углу DAF что и равно 120:2=60 градусов каждый. Т. к. АВ II FD то по 2-ому свойству параллельных прямых BAF+AFD=180 градусов, значит угол AFD равен 180-60-60=60 градусов. Н уи т. к. сумма всех углов треугольника равна 180-ти градусам, то угол ADF равен 180-60-60=60 градусов.
Треугольники DEL и FEL равны по двум сторонам и углу между ними, так как EL - общая сторона, DE=EF (дано), а ∠DEL = ∠FEL (в равнобедренном треугольнике медиана является и биссектрисой. (первый признак)
Или: Треугольники DEL и FEL равны по стороне и двум прилежащим к ней углам, так как DE=EF (дано), ∠EDL = ∠EFL (в равнобедренном треугольнике углы при основании равны), а ∠DEL = ∠FEL (в равнобедренном треугольнике медиана является и биссектрисой. (второй признак).
Или по трем сторонам (третий признак), так как DE=EF (дано), EL - общая, а DL = FL, так как EL - медиана.
2. Только слушай УГОЛ BAC НЕ МОЖЕТ БЫТЬ 720 ГРАДУСОВ, Я ПОСТАВЛЮ В НЕГО НАВЕРНОЕ 120 ГРАДУСОВ. Т. к. AD - биссектриса следовательно угол BAD равен углу DAF что и равно 120:2=60 градусов каждый. Т. к. АВ II FD то по 2-ому свойству параллельных прямых BAF+AFD=180 градусов, значит угол AFD равен 180-60-60=60 градусов. Н уи т. к. сумма всех углов треугольника равна 180-ти градусам, то угол ADF равен 180-60-60=60 градусов.
Треугольники равеы по всем трем признакам.
Объяснение:
Треугольники DEL и FEL равны по двум сторонам и углу между ними, так как EL - общая сторона, DE=EF (дано), а ∠DEL = ∠FEL (в равнобедренном треугольнике медиана является и биссектрисой. (первый признак)
Или: Треугольники DEL и FEL равны по стороне и двум прилежащим к ней углам, так как DE=EF (дано), ∠EDL = ∠EFL (в равнобедренном треугольнике углы при основании равны), а ∠DEL = ∠FEL (в равнобедренном треугольнике медиана является и биссектрисой. (второй признак).
Или по трем сторонам (третий признак), так как DE=EF (дано), EL - общая, а DL = FL, так как EL - медиана.