Длина ребра куба ABCDA₁B₁C₁D₁ равна 4 см.Найти расстояние между прямой AD и плоскостью СD₁A₁. || a= 4 см ; d(AD; пл.(СD₁A₁)) -?.
плоскость СD₁A₁ ≡ плоскость СD₁A₁B₁ (Плоскости совпадают _ одна и та же плоскость). плоскости ADC₁B₁ и СD₁A₁B₁ взаимно перпендикулярны * * * (ADC₁B₁СD₁A₁B₁) ⊥(СD₁A₁B₁ ) * * * Допустим O точка пересечение диагоналей DC₁ и D₁C (DC₁ ⊥ D₁C) грани DCC₁D₁. Отрезок DO и есть расстояние между прямой AD и плоскостью СD₁A₁ . DO =DC₁/2 =(a√2)/2 = (4√2)/2 см =2√2 см.
Обозначим длину касательной буквой К. Точку, из которой повели касательную и секущую назовём А.
Тогда длина внешнего отрезка секущей по условию К-5 Тогда длина внутреннего отрезка К+5 Тогда расстояние от точки А до точки выхода секущей из окружности будет (К-5) + (К+5) = 2К.
Теперь применяем теорему о секущей. K^2 = (К-5) * 2К Решаем, K^2 = 2*K^2 - 10*К K^2 = 10К случай К=0 отбрасываем как неподходящий по смыслу задачи, остаётся длина касательной К=10 см -- такой у меня получился ответ.
|| a= 4 см ; d(AD; пл.(СD₁A₁)) -?.
плоскость СD₁A₁ ≡ плоскость СD₁A₁B₁
(Плоскости совпадают _ одна и та же плоскость).
плоскости ADC₁B₁ и СD₁A₁B₁ взаимно перпендикулярны
* * * (ADC₁B₁СD₁A₁B₁) ⊥(СD₁A₁B₁ ) * * *
Допустим O точка пересечение диагоналей DC₁ и D₁C (DC₁ ⊥ D₁C) грани DCC₁D₁.
Отрезок DO и есть расстояние между прямой AD и плоскостью СD₁A₁ . DO =DC₁/2 =(a√2)/2 = (4√2)/2 см =2√2 см.
ответ: 2√2 см.
Обозначим длину касательной буквой К. Точку, из которой повели касательную и секущую назовём А.
Тогда длина внешнего отрезка секущей по условию К-5
Тогда длина внутреннего отрезка К+5
Тогда расстояние от точки А до точки выхода секущей из окружности будет (К-5) + (К+5) = 2К.
Теперь применяем теорему о секущей.
K^2 = (К-5) * 2К
Решаем,
K^2 = 2*K^2 - 10*К
K^2 = 10К
случай К=0 отбрасываем как неподходящий по смыслу задачи,
остаётся длина касательной К=10 см -- такой у меня получился ответ.
Но ты лучше проверь.