При пересечении двух хорд в одной точке произведение двух частей одной хорды равно произведению частей второй хорды.Для удобства Назовём хорды и точку их пересечения.Пусть Хорда АВ пересекается с хордой ТМ в точке К,тогда по теореме АК*КВ=ТК*КМ Тогда 2*9=ТК*КМ
Да, коллинеарны.
Объяснение:
По условию векторы a и b - коллинеарные векторы.
Пусть,
a={x1;y1;z1}
b={x2;y2;z2}
a+b={x1+x2;y1+y2;z1+z2}
Тогда по условию коллинеарности
x1/x2=y1/y2=z1/z2=k
тогда координаты вектора b можно переписать в виде:
b={k*x1;k*y1;k*z1}
Вектор a+b примет вид:
a+b={x1+k*x1;y1+k*y1;z1+k*z1}
Проверим выполняется ли условие коллинеарности:
x1/(x1+k*x1)=y1/(y1+k*x1)=z1/(z1+k*z1)
x1/(x1*(k+1))=y1/(y1*(k+1))=z1/(z1*(k+1))
1/(k+1)=1/(k+1)=1/(k+1)
Соотношения равны ⇒ условие коллинеарности соблюдено и вектора коллинеарны
Объяснение:
При пересечении двух хорд в одной точке произведение двух частей одной хорды равно произведению частей второй хорды.Для удобства Назовём хорды и точку их пересечения.Пусть Хорда АВ пересекается с хордой ТМ в точке К,тогда по теореме АК*КВ=ТК*КМ Тогда 2*9=ТК*КМ
Пусть ТК- равен х см ,тогда КМ=х+3.
Составляем уравнение 2*9=х*(х+3) ;18=х²+3х х²+3х-18=0
х²+3х-18=0
По теореме Виета
х1+х2=-3 х1=3
х1*х2=-18 х2= -6 Значение -6 нам не подходит,так как длина не может быть отрицательной .Поэтому ТК=3 см,тогда КМ=3+3= 6см
ответ: больший отрезок второй хорды равен 6 см