Площадь круга находят по формуле S =πr² Радиус вписанного в треугольник круга можно найти по формуле r=S:p, где S- площадь треугольника, р- его полупериметр. р=(10+24+26):2=30Площадь треугольника найдем по формуле Герона:S=√{(p−a)(p−b)(p−c)}, где р- полупериметр треугольника, а, b и с - его стороны. S=√(30•20•6•4)= √(6•5•5•4•6•4)=6•5•4=120r=120:30=4 см S =16π см²Радиус найти будет проще, если заметить, что отношение сторон этого треугольника из так называемых Пифагоровых троек, а именно 10:24:26=5:12:13 Это отношение сторон прямоугольного треугольника. Тогда по формуле радиуса вписанной в прямоугольный треугольник окружности r=(a+b-c):2, где а, b - катеты, с - гипотенуза:r=(10+24-26):2=4 cм. Площадь круга, естественно. будет та же - 16π см²
S=√(30•20•6•4)= √(6•5•5•4•6•4)=6•5•4=120r=120:30=4 см S =16π см²Радиус найти будет проще, если заметить, что отношение сторон этого треугольника из так называемых Пифагоровых троек, а именно 10:24:26=5:12:13 Это отношение сторон прямоугольного треугольника. Тогда по формуле радиуса вписанной в прямоугольный треугольник окружности r=(a+b-c):2, где а, b - катеты, с - гипотенуза:r=(10+24-26):2=4 cм. Площадь круга, естественно. будет та же - 16π см²
64 + 50 = 114 см
68 ^ 4 = 17 cм - сторона ромба
114 - 68 = 46 - сумма диагоналей ромба
46 : 2 = 23 см - полусумма диагоналей (АО + КО, где О точка пересечения диагоналей)
Пусть КО = х, тогда
АО = 23 - х
x^2 + (23 - x)^2 = 289
x^2 + 529 + x^2 - 46x = 289
2x^2 - 46x + 240 = 0
x^2 - 23x + 120 = 0
D = 529 - 480 = 49
x= (23 + 7) : 2 = 15 cм - катет КО
23 - 15 = 8 см - катет АО
Диагонали равны:
АС = 8 * 2 = 16 см
ВК = 15 * 2 = 30 см
Площадь ромба равна половине произведения его диагоналей
S = 16 * 30 : 2 = 240 см^2