Я не знаю как тебе нужно оформить, но начни доказательство с того, что диаметр - это хорда, проходящая через центр окружности.
1). Диаметры равны и пересекаются в середине (т. е. точкой пересечения делятся пополам). Из этого следует, что:
АО=ОС=ВО=OD (т. к. это радиусы окружности).
2). Пусть чентр окружности - точка О.
3). Рассмотрим треугольники АОС и BOD.
Они равны по первому признаку равенства треугольников (по двум сторонами и углу между ними).
Угол АОС равен углу BOD (т. к. они вертикальные)
Поэтому ВD и АС равны. И там дальше продолжай доказывать, исходя из того, что написано...
Объяснение:
Прямая, параллельная стороне треугольника и пересекающая две другие его стороны, отсекает от него треугольник, подобный данному.
1. MN || BC => △AMN~ △AВС => MN/BC=AM/AB; AM=MN*AB/BC=5*18/15=6
2. PD || AC => △PBD~ △AВС => PD/AC=BD/BC; BC=AC*BD/PD=9*4/3=12
3. DE || AB => △ECD~ △BCA => CE/CB=DE/AB; CB=CE+BE=6+2=8; AB=CB*DE/CE=8*4/6=5 1/3 (пять целых одна третья)
4. MN || AC => △ABC~ △MBN => AC/MN=BC/BN;
AC/MN=5/12; BN=BC+CN=BC+8;
5/12=BC/(BC+8)
12BC=5(BC+8)
12BC=5BC+40
7BC=40
BC=40/7=5 5/7 (пять целых, пять седьмых)
Я не знаю как тебе нужно оформить, но начни доказательство с того, что диаметр - это хорда, проходящая через центр окружности.
1). Диаметры равны и пересекаются в середине (т. е. точкой пересечения делятся пополам). Из этого следует, что:
АО=ОС=ВО=OD (т. к. это радиусы окружности).
2). Пусть чентр окружности - точка О.
3). Рассмотрим треугольники АОС и BOD.
Они равны по первому признаку равенства треугольников (по двум сторонами и углу между ними).
Угол АОС равен углу BOD (т. к. они вертикальные)
Поэтому ВD и АС равны. И там дальше продолжай доказывать, исходя из того, что написано...
Объяснение:
Прямая, параллельная стороне треугольника и пересекающая две другие его стороны, отсекает от него треугольник, подобный данному.
1. MN || BC => △AMN~ △AВС => MN/BC=AM/AB; AM=MN*AB/BC=5*18/15=6
2. PD || AC => △PBD~ △AВС => PD/AC=BD/BC; BC=AC*BD/PD=9*4/3=12
3. DE || AB => △ECD~ △BCA => CE/CB=DE/AB; CB=CE+BE=6+2=8; AB=CB*DE/CE=8*4/6=5 1/3 (пять целых одна третья)
4. MN || AC => △ABC~ △MBN => AC/MN=BC/BN;
AC/MN=5/12; BN=BC+CN=BC+8;
5/12=BC/(BC+8)
12BC=5(BC+8)
12BC=5BC+40
7BC=40
BC=40/7=5 5/7 (пять целых, пять седьмых)