Сириус курсы. Геометрия. 9 класс. v1.4. Радикальные оси. Задача №5.
1. Чертим 2 пересекающиеся прямые. Т.к прямые бесконечны, то их можно чертить в любых масштабах. Начертим , маленькие.
2.Отмечаем точки на них, подписываем цифрами длину отрезков.
3. Как известно из видео, которое ты невнимательно смотрела, длины если произведения отрезков, находящихся на одной прямой и имеющих общую точку соответственно равно произведению отрезков, находящихся на второй прямой, то эти отрезки лежат на одной окружности, а значит и точки, которыми соединяются отрезки лежат на этой окружности.
4. Перебираем варианты: ( О - общая точка пересечения нужных отрезков)
1. AO*OB = OD* OE
2. AO*OC = OG*OD
Следовательно подходят варианты:
ADBE, ADCG.
P.S. Курсы созданы, чтобы там стараться и додумывать самим)
1) Центром вписанной окружности треугольника является точка пересечения биссектрис.
Биссектриса к основанию равнобедренного треугольника является высотой и медианой.
MO - биссектриса, KE - биссектриса, высота и медиана.
ME=EN=10
По теореме Пифагора
KE =√(MK^2-ME^2) =12*2 =24
По теореме о биссектрисе
KO/OE =MK/ME =13/5 => OE =5/18 KE =20/3
Или по формулам
S=pr
S=√[p(p-a)(p-b)(p-c)], где p=(a+b+c)/2
Отсюда
r=√[(p-a)(p-b)(p-c))/p]
при a=b
r=c/2 *√[(a -c/2)/(a +c/2)] =10*√(16/36] =20/3
3) Вписанный угол, опирающийся на диаметр - прямой, K=90
MN =2*OM =26
По теореме Пифагора
KN =√(MN^2-MK^2) =5*2 =10
P(KMN) =2(5+12+13) =60
ADBE, ADCG
Объяснение:
Сириус курсы. Геометрия. 9 класс. v1.4. Радикальные оси. Задача №5.
1. Чертим 2 пересекающиеся прямые. Т.к прямые бесконечны, то их можно чертить в любых масштабах. Начертим , маленькие.
2.Отмечаем точки на них, подписываем цифрами длину отрезков.
3. Как известно из видео, которое ты невнимательно смотрела, длины если произведения отрезков, находящихся на одной прямой и имеющих общую точку соответственно равно произведению отрезков, находящихся на второй прямой, то эти отрезки лежат на одной окружности, а значит и точки, которыми соединяются отрезки лежат на этой окружности.
4. Перебираем варианты: ( О - общая точка пересечения нужных отрезков)
1. AO*OB = OD* OE
2. AO*OC = OG*OD
Следовательно подходят варианты:
ADBE, ADCG.
P.S. Курсы созданы, чтобы там стараться и додумывать самим)